Nature - 2019.08.29

(Frankie) #1

Article reSeArcH


preconditioning are nearly lost in the hearts of Mitok-knockout mice
(as also shown by analysis of infarct size; Fig. 5e), which demonstrates


that mitoKATP is the molecular target of diazoxide—at least in this
pathological setting.


In conclusion, we have identified a protein complex that accounts for
ATP-sensitive K+ transport across the inner mitochondrial membrane,


composed of a channel-forming subunit (MITOK) and a regulatory
subunit that carries the ATP-binding domain (MITOSUR). Although


we do not exclude the possibility that other proteins could perform
similar activities in specific tissues^37 , the in vitro reconstitution of this


complex is sufficient to reliably recapitulate the main electrophysiologi-
cal properties and pharmacological profile of the long-sought mitoKATP


complex^13. The mitoKATP complex that we identify represents a poten-
tial mechanism for matching ATP availability to energy production,


and thus contributing to the homeostatic control of cellular metabolism
under stress conditions.


Online content
Any methods, additional references, Nature Research reporting summaries,
source data, extended data, supplementary information, acknowledgements, peer
review information; details of author contributions and competing interests; and
statements of data and code availability are available at https://doi.org/10.1038/
s41586-019-1498-3.


Received: 29 November 2017; Accepted: 25 July 2019;
Published online 21 August 2019.



  1. Ashcroft, F. M., Harrison, D. E. & Ashcroft, S. J. Glucose induces closure of single
    potassium channels in isolated rat pancreatic β-cells. Nature 312 , 446–448
    (1984).

  2. Ashcroft, F. M. & Rorsman, P. KATP channels and islet hormone secretion: new
    insights and controversies. Nat. Rev. Endocrinol. 9 , 660–669 (2013).

  3. Nichols, C. G. KATP channels as molecular sensors of cellular metabolism. Nature
    440 , 470–476 (2006).

  4. Inoue, I., Nagase, H., Kishi, K. & Higuti, T. ATP-sensitive K+ channel in the
    mitochondrial inner membrane. Nature 352 , 244–247 (1991).

  5. Paucek, P. et al. Reconstitution and partial purification of the glibenclamide-
    sensitive, ATP-dependent K+ channel from rat liver and beef heart
    mitochondria. J. Biol. Chem. 267 , 26062–26069 (1992).

  6. Garlid, K. D. & Halestrap, A. P. The mitochondrial KATP channel—fact or fiction?
    J. Mol. Cell. Cardiol. 52 , 578–583 (2012).
    7. Augustynek, B. B., Kunz, W. S. & Szewczyk, A. in Pharmacology of Mitochondria
    (Handbook of Experimental Pharmacology vol. 240) (eds Singh, H. & Sheu, S.S.)
    103–127 (Springer, Cham, 2016).
    8. Nessa, A., Rahman, S. A. & Hussain, K. Hyperinsulinemic hypoglycemia – the
    molecular mechanisms. Front. Endocrinol. (Lausanne) 7 , 29 (2016).
    9. Garlid, K. D. et al. Cardioprotective effect of diazoxide and its interaction with
    mitochondrial ATP-sensitive K+ channels. Possible mechanism of
    cardioprotection. Circ. Res. 81 , 1072–1082 (1997).
    10. O’Rourke, B. Evidence for mitochondrial K+ channels and their role in
    cardioprotection. Circ. Res. 94 , 420–432 (2004).
    11. Sato, T., Sasaki, N., Seharaseyon, J., O’Rourke, B. & Marbán, E. Selective
    pharmacological agents implicate mitochondrial but not sarcolemmal
    KATP channels in ischemic cardioprotection. Circulation 101 , 2418–2423
    (2000).
    12. Wojtovich, A. P. et al. Kir6.2 is not the mitochondrial KATP channel but is required
    for cardioprotection by ischemic preconditioning. Am. J. Physiol. Heart Circ.
    Physiol. 304 , H1439–H1445 (2013).
    13. Szabo, I. & Zoratti, M. Mitochondrial channels: ion fluxes and more. Physiol. Rev.
    94 , 519–608 (2014).
    14. Smith, C. O., Nehrke, K. & Brookes, P. S. The Slo(w) path to identifying the
    mitochondrial channels responsible for ischemic protection. Biochem. J. 474 ,
    2067–2094 (2017).
    15. Calvo, S. E., Clauser, K. R. & Mootha, V. K. MitoCarta2.0: an updated inventory of
    mammalian mitochondrial proteins. Nucleic Acids Res. 44 , D1251–D1257
    (2016).
    16. The GTEx Consortium. The Genotype–Tissue Expression (GTEx) pilot analysis:
    Multitissue gene regulation in humans. Science 348 , 648–660 (2015).
    17. Dahlem, Y. A. et al. The human mitochondrial KATP channel is modulated by
    calcium and nitric oxide: a patch-clamp approach. Biochim. Biophys. Acta 1656 ,
    46–56 (2004).
    18. Bednarczyk, P. et al. Quinine inhibits mitochondrial ATP-regulated potassium
    channel from bovine heart. J. Membr. Biol. 199 , 63–72 (2004).
    19. Choma, K. et al. Single channel studies of the ATP-regulated potassium channel
    in brain mitochondria. J. Bioenerg. Biomembr. 41 , 323–334 (2009).
    20. Cang, C., Aranda, K., Seo, Y. J., Gasnier, B. & Ren, D. TMEM175 is an organelle K+
    channel regulating lysosomal function. Cell 162 , 1101–1112 (2015).
    21. Schaedler, T. A. et al. Structures and functions of mitochondrial ABC
    transporters. Biochem. Soc. Trans. 43 , 943–951 (2015).
    22. Ardehali, H., Chen, Z., Ko, Y., Mejía-Alvarez, R. & Marbán, E. Multiprotein complex
    containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+
    channel activity. Proc. Natl Acad. Sci. USA 101 , 11880–11885 (2004).
    23. Lee, S.-Y. et al. Architecture mapping of the inner mitochondrial membrane
    proteome by chemical tools in live cells. J. Am. Chem. Soc. 139 , 3651–3662
    (2017).
    24. Bernardi, P. Mitochondrial transport of cations: channels, exchangers, and
    permeability transition. Physiol. Rev. 79 , 1127–1155 (1999).
    25. Liu, X. & Hajnóczky, G. Altered fusion dynamics underlie unique morphological
    changes in mitochondria during hypoxia-reoxygenation stress. Cell Death Differ.
    18 , 1561–1572 (2011).
    26. Duchen, M. R., Leyssens, A. & Crompton, M. Transient mitochondrial
    depolarizations reflect focal sarcoplasmic reticular calcium release in single rat
    cardiomyocytes. J. Cell Biol. 142 , 975–988 (1998).
    27. Schwarzländer, M. et al. Pulsing of membrane potential in individual
    mitochondria: a stress-induced mechanism to regulate respiratory
    bioenergetics in Arabidopsis. Plant Cell 24 , 1188–1201 (2012).
    28. Wang, W. et al. Superoxide flashes in single mitochondria. Cell 134 , 279–290
    (2008).
    29. Rosselin, M., Santo-Domingo, J., Bermont, F., Giacomello, M. & Demaurex, N.
    L-OPA1 regulates mitoflash biogenesis independently from membrane fusion.
    EMBO Rep. 18 , 451–463 (2017).
    30. Leanza, L. et al. Direct pharmacological targeting of a mitochondrial ion
    channel selectively kills tumor cells in vivo. Cancer Cell 31 , 516–531.e10
    (2017).
    31. Garlid, K. D. & Paucek, P. The mitochondrial potassium cycle. IUBMB Life 52 ,
    153–158 (2001).
    32. Patten, D. A. et al. OPA1-dependent cristae modulation is essential for cellular
    adaptation to metabolic demand. EMBO J. 33 , 2676–2691 (2014).
    33. Costa, A. D. T. & Garlid, K. D. Intramitochondrial signaling: interactions among
    mitoKATP, PKCε, ROS, and MPT. Am. J. Physiol. Heart Circ. Physiol. 295 ,
    H874–H882 (2008).
    34. Varanita, T. et al. The OPA1-dependent mitochondrial cristae remodeling
    pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab.
    21 , 834–844 (2015).
    35. Liu, Y., Sato, T., O’Rourke, B. & Marban, E. Mitochondrial ATP-dependent
    potassium channels: novel effectors of cardioprotection? Circulation 97 ,
    2463–2469 (1998).
    36. Walters, A. M., Porter, G. A. Jr & Brookes, P. S. Mitochondria as a drug target in
    ischemic heart disease and cardiomyopathy. Circ. Res. 111 , 1222–1236
    (2012).
    37. Foster, D. B. et al. Mitochondrial ROMK channel is a molecular component of
    mitoKATP. Circ. Res. 111 , 446–454 (2012).


Publisher’s note: Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

WT MITOK KO

GRP75
MITOK

75

kDa

35

50

0

10

20

30

40

50

Heart injury (% LDH release)

WT I/R +
vehicle

WT I/R +
diazoxide 30 μM

MITOK KO I/R +
vehicle

MITOK KO I/R +
diazoxide 30 μM









7

8

9

10

11

12

Non-treated
ATP
ATP + diazoxide 50 μM

1 min –0.5

0

0.5

1.0

1.5

2.0
Non-treated

86

Rb

+ inux

(cps mg

–1 protein (

×^10

–3))

86

Rb

+ inux rate

(normalized cps min

–1

)
ATP
ATP + diazoxide 50 μM
*





WT MITOK KO

ab


c
d


e


WT MITOK KO

Diazoxide –+–+


35.3 ±
17.4

Infarct
size (%)


11.6 ±
12 .8 *

33.8 ±
17.1

27.2 ±
15.1

Fig. 5 | MITOK is required for diazoxide-induced cardioprotection.
a,^86 Rb+ flux in isolated mitochondria. n = 3 independent experiments.
b,^86 Rb+ uptake rate. n = 3 independent experiments, P ≤ 0.029 using
two-tailed Student’s t-test. c, Western blot of wild-type and MITOK-
knockout liver mitochondria. d, e, Heart injury after ischaemia–reperfusion
(I/R), evaluated as percentage of lactate dehydrogenase (LDH) release
(d, mean ± s.d., n ≥  5  independent mice,
P < 0.001 using two-way
ANOVA with Holm–Sidak correction) or percentage of infarct area after
staining with 2,3,5-triphenyltetrazolium chloride (TTC) (e, mean ± s.d.,
n ≥ 7 independent mice, *P = 0.008). Single measurements are provided
in Source Data.


29 AUGUSt 2019 | VOl 572 | NAtUre | 613
Free download pdf