56 GAMES WORLD^ OF PUZZLES | october 2019
1
1 2 6 9 6 5 5 4 3 4
2
4
1
1
11
2 3 8 8 7 5 3
Figure 1
1
1 2 6 9 6 5 5 4 3 4
2
4
1
1
1 1
2 3 8 8 7 5 3
Figure 2
1
1 2 6 9 6 5 5 4 3 4
2
4
1
1
11
2 3 8 8 7 5 3
Figure 3
1
1 2 6 9 6 5 5 4 3 4
2
4
1
1
11
2 3 8 8 7 5 3
Figure 4
These eight puzzles feature a unique blend of logic and art. The numbers are all you need to determine which squares
WLSYPHFIƼPPIHMRXSJSVQETMGXYVI,IVIƅWLS[MXƅWHSRI
The numbers outside each row and column tell you how many groups of black squares there are in that line and, in
order, how many consecutive black squares there are in each group. For example, 4 5 9 2 tells you that there will be four
groups that will contain, in order, 4, 5, 9, and 2 consecutive black squares. The fact that the numbers are separated tells
you that there is at least one empty square between them. (There may also be empty squares at the ends of lines.) The
XVMGOMWXSƼKYVISYXLS[QER]IQTX]WUYEVIWGSQIFIX[IIRXLIFPEGOSRIW
,IVIƅWEWXEVXMRKLMRXź;LIRXLIVIƅWEWMRKPIRYQFIVMREVS[ERHXLEXRYQFIVMWKVIEXIVXLERLEPJXLIRYQFIVSJ
WUYEVIWMRXLIVS[]SYGERƼPPMRSRISVQSVIGIRXIVWUYEVIW*SVI\EQTPIMRXLIWEQTPIFIPS[*MKYVI
[LMGLMW
squares wide, the sixth and seventh rows each have the number 8. No matter how you place eight consecutive black
WUYEVIWMREVS[XLIQMHHPIWM\WUYEVIW[MPPFIƼPPIHMR*MKYVI
7MQMPEVPSKMGGERFIYWIHXSWXEVXEPMRIXLEXLEWQSVI
than one number in it. In the sample, the third column contains the numbers 1 6. The single black square and the fol-
PS[MRKIQTX]WUYEVIQYWXXEOIYTEXPIEWXX[SWUYEVIWEFSZIXLI2SQEXXIVLS[XLI]KIXTPEGIHXLIƼJXLXLVSYKL
eighth squares of the column will be black (Figure 3). Figure 4 shows the completed picture. ANSWERS, PAGE 78
4ȳǣǞǘȲǓ2ǗǟȲȨǚǙ
8
10
522
43111
211211
2111
3111
4114
334
114
234
1224
2515
318
18
610
16
15
13
641
114
11111
118
64141
1111
6
13
8
14
4
3
1
12
5
5
11
3
2
11
2
1
1
11
2 2 1 1 3 3 3 1
2
1
1
1
1
11
2
1
3
11
5
4
1
11
2
2
136
6
2
6
2
1
13
1
2
2
10
5
1
9
1
2
1
8
1
2
4
2
12
7
11
14
16
17
613
5195
185
186
6106
41212
2122
1121
731
55
174
2182
1111
127
61
6
61
1312
321
3211
432
115211
11211
31133
7114
914
957
23111
7516
11 12
5
7
8
2
8
10
2
1
1
4
2
11
3
2
10
1
3
2
6
3
2
6
5 3 2 1 1 1 6
5 2 3 1 1 3 1
13
1
3
1
13
1
2
14
2
1
3
14
4
1
1
5
17
2
6
17
2
1
6
17
3
1
4
1
23
1
4
1
21
2
2
3
2 5 8 2 3 1 1
2 1 3 6 2 6 1
5
5
7
1
7
7
3
5
6
4 1 3 1 3 2
4
5
2
4
2
4
3
5
2
3
1
1
7