Science - 16.08.2019

(C. Jardin) #1

  1. M. Koppen, T. Langer, Protein degradation within mitochondria:
    Versatile activities of AAA proteases and other peptidases.
    Crit. Rev. Biochem. Mol. Biol. 42 , 221–242 (2007).
    doi:10.1080/10409230701380452; pmid: 17562452

  2. V. Soubannieret al., A vesicular transport pathway shuttles
    cargo from mitochondria to lysosomes.Curr. Biol. 22 , 135– 141
    (2012). doi:10.1016/j.cub.2011.11.057; pmid: 22226745

  3. F. Le Guerrouéet al., Autophagosomal content profiling reveals
    an LC3C-dependent piecemeal mitophagy pathway.Mol. Cell
    68 , 786–796.e6 (2017). doi:10.1016/j.molcel.2017.10.029;
    pmid: 29149599

  4. J. L. Burmanet al., Mitochondrial fission facilitates the selective
    mitophagy of protein aggregates.J. Cell Biol. 216 , 3231– 3247
    (2017). doi:10.1083/jcb.201612106;pmid:28893839

  5. E. S. Vincowet al., Autophagy accounts for approximately
    one-third of mitochondrial protein turnover and is protein
    selective.Autophagy 2019 ,1–14 (2019). doi:10.1080/
    15548627.2019.1586258; pmid: 30865561

  6. R. T. Sauer, T. A. Baker, AAA+proteases: ATP-fueled machines
    of protein destruction.Annu. Rev. Biochem. 80 , 587– 612
    (2011). doi:10.1146/annurev-biochem-060408-172623;
    pmid: 21469952

  7. Q. Zhaoet al., A mitochondrial specific stress response
    in mammalian cells.EMBO J. 21 , 4411–4419 (2002).
    doi:10.1093/emboj/cdf445; pmid: 12198143

  8. C. Münch, J. W. Harper, Mitochondrial unfolded protein
    response controls matrix pre-RNA processing and translation.
    Nature 534 , 710–713 (2016). doi:10.1038/nature18302;
    pmid: 27350246

  9. S. M. Jin, R. J. Youle, The accumulation of misfolded proteins
    in the mitochondrial matrix is sensed by PINK1 to induce
    PARK2/Parkin-mediated mitophagy of polarized mitochondria.
    Autophagy 9 , 1750–1757 (2013). doi:10.4161/auto.26122;
    pmid: 24149988

  10. J. Y. Yang, W. Y. Yang, Bit-by-bit autophagic removal of parkin-
    labelled mitochondria.Nat. Commun. 4 , 2428 (2013).
    doi:10.1038/ncomms3428; pmid: 24013556

  11. A. Melber, C. M. Haynes, UPRmtregulation and output: A stress
    response mediated by mitochondrial-nuclear communication.
    Cell Res. 28 , 281–295 (2018). doi:10.1038/cr.2018.16;
    pmid: 29424373

  12. A. M. Nargund, M. W. Pellegrino, C. J. Fiorese, B. M. Baker,
    C. M. Haynes, Mitochondrial import efficiency of
    ATFS-1 regulates mitochondrial UPR activation.Science 337 ,
    587 – 590 (2012). doi:10.1126/science.1223560;
    pmid: 22700657

  13. P. M. Quiróset al., Multi-omics analysis identifies ATF4 as a
    key regulator of the mitochondrial stress response in
    mammals.J. Cell Biol. 216 , 2027–2045 (2017). doi:10.1083/
    jcb.201702058; pmid: 28566324

  14. C. J. Fioreseet al., The transcription factor ATF5 mediates a
    mammalian mitochondrial UPR.Curr. Biol. 26 , 2037– 2043
    (2016). doi:10.1016/j.cub.2016.06.002; pmid: 27426517

  15. N. A. Khanet al., mTORC1 regulates mitochondrial integrated
    stress response and mitochondrial myopathy progression.
    Cell Metab. 26 , 419–428.e5 (2017). doi:10.1016/
    j.cmet.2017.07.007; pmid: 28768179

  16. L. Wrobelet al., Mistargeted mitochondrial proteins activate a
    proteostatic response in the cytosol.Nature 524 , 485– 488
    (2015). doi:10.1038/nature14951; pmid: 26245374

  17. X. Wang, X. J. Chen, A cytosolic network suppressing
    mitochondria-mediated proteostatic stress and cell death.
    Nature 524 , 481–484 (2015). doi:10.1038/nature14859;
    pmid: 26192197

  18. H. Weidberg, A. Amon, MitoCPR-A surveillance pathway that
    protects mitochondria in response to protein import stress.
    Science 360 , eaan4146 (2018). doi:10.1126/science.aan4146;
    pmid: 29650645

  19. V. Okreglak, P. Walter, The conserved AAA-ATPase Msp1
    confers organelle specificity to tail-anchored proteins.
    Proc. Natl. Acad. Sci. U.S.A. 111 , 8019–8024 (2014).
    doi:10.1073/pnas.1405755111;pmid: 24821790

  20. Y. C. Chenet al., Msp1/ATAD1 maintains mitochondrial
    function by facilitating thedegradation of mislocalized
    tail-anchored proteins.EMBO J. 33 ,1548–1564 (2014).
    doi:10.15252/embj.201487943;pmid:24843043

  21. F. Booset al., Mitochondrial protein-induced stress triggers a
    global adaptive transcriptional programme.Nat. Cell Biol. 21 ,
    442 – 451 (2019). doi:10.1038/s41556-019-0294-5;
    pmid: 30886345

  22. C. U. Mårtenssonet al., Mitochondrial protein translocation-
    associated degradation.Nature 569 , 679–683 (2019).
    doi:10.1038/s41586-019-1227-y; pmid: 31118508
    37. T. Izawa, S. H. Park, L. Zhao, F. U. Hartl, W. Neupert, Cytosolic
    protein Vms1 links ribosome quality control to mitochondrial
    and cellular homeostasis.Cell 171 , 890–903.e18 (2017).
    doi:10.1016/j.cell.2017.10.002; pmid: 29107329
    38. E. Itakuraet al., Ubiquilins chaperone and triage mitochondrial
    membrane proteins for degradation.Mol. Cell 63 ,21– 33
    (2016). doi:10.1016/j.molcel.2016.05.020; pmid: 27345149
    39. M. Patron, H. G. Sprenger, T. Langer, m-AAA proteases,
    mitochondrial calcium homeostasis and neurodegeneration.
    Cell Res. 28 , 296–306 (2018). doi:10.1038/cr.2018.17;
    pmid: 29451229
    40. R. Rojansky, M. Y. Cha, D. C. Chan, Elimination of paternal
    mitochondria in mouse embryos occurs through autophagic
    degradation dependent on PARKIN and MUL1.eLife 5 , e17896
    (2016). doi:10.7554/eLife.17896; pmid: 27852436
    41. M. Sato, K. Sato, Degradation of paternal mitochondria by
    fertilization-triggered autophagy in C. elegans embryos.
    Science 334 ,1141–1144 (2011). doi:10.1126/science.1210333;
    pmid: 21998252
    42. S. Al Rawiet al., Postfertilization autophagy of sperm
    organelles prevents paternal mitochondrial DNA transmission.
    Science 334 ,1144–1147 (2011). doi:10.1126/science.1211878;
    pmid: 22033522
    43. L. C. Greaveset al., Comparison of mitochondrial mutation
    spectra in ageing human colonic epithelium and disease:
    Absence of evidence for purifying selection in somatic
    mitochondrial DNA point mutations.PLOS Genet. 8 , e1003082
    (2012). doi:10.1371/journal.pgen.1003082; pmid: 23166522
    44. R. Filogranaet al., Modulation of mtDNA copy number
    ameliorates the pathological consequences of a heteroplasmic
    mtDNA mutation in the mouse.Sci. Adv. 5 , eaav9824 (2019).
    doi:10.1126/sciadv.aav9824; pmid: 30949583
    45. T. Suet al., Inherited pathogenic mitochondrial DNA mutations
    and gastrointestinal stem cell populations.J. Pathol. 246 ,
    427 – 432 (2018). doi:10.1002/path.5156; pmid: 30146801
    46. C. L. Samstaget al., Deleterious mitochondrial DNA
    point mutations are overrepresented inDrosophilaexpressing
    a proofreading-defective DNA polymeraseg.PLOS Genet. 14 ,
    e1007805 (2018). doi:10.1371/journal.pgen.1007805;
    pmid: 30452458
    47. D. F. Suen, D. P. Narendra, A. Tanaka, G. Manfredi, R. J. Youle,
    Parkin overexpression selects against a deleterious mtDNA
    mutation in heteroplasmic cybrid cells.Proc. Natl. Acad. Sci. U.S.A.
    107 , 11835–11840 (2010). doi:10.1073/pnas.0914569107;
    pmid: 20547844
    48. R. W. Gilkersonet al., Mitochondrial autophagy in cells with
    mtDNA mutations results from synergistic loss of
    transmembrane potential and mTORC1 inhibition.Hum. Mol.
    Genet. 21 , 978–990 (2012). doi:10.1093/hmg/ddr529;
    pmid: 22080835
    49. J. R. Friedman, J. Nunnari, Mitochondrial form and function.
    Nature 505 , 335–343 (2014). doi:10.1038/nature12985;
    pmid: 24429632
    50.A. L. Hughes, C. E. Hughes, K. A. Henderson, N. Yazvenko,
    D. E. Gottschling, Selective sorting and destruction of
    mitochondrial membrane proteins in aged yeast.eLife 5 ,
    e13943 (2016). doi:10.7554/eLife.13943; pmid: 27097106
    51. A. B. Lindner, R. Madden, A. Demarez, E. J. Stewart, F. Taddei,
    Asymmetric segregation of protein aggregates is associated
    with cellular aging and rejuvenation.Proc. Natl. Acad. Sci. U.S.A.
    105 , 3076–3081 (2008). doi:10.1073/pnas.0708931105;
    pmid: 18287048
    52. A. Iwasaki, R. Medzhitov, Control of adaptive immunity by the
    innate immune system.Nat. Immunol. 16 , 343–353 (2015).
    doi:10.1038/ni.3123; pmid: 25789684
    53. J. Lugrin, F. Martinon, The AIM2 inflammasome: Sensor of
    pathogens and cellular perturbations.Immunol. Rev. 281 ,
    99 – 114 (2018). doi:10.1111/imr.12618; pmid: 29247998
    54. G. N. Barber, STING: Infection, inflammation and cancer.
    Nat. Rev. Immunol. 15 , 760–770 (2015). doi:10.1038/nri3921;
    pmid: 26603901
    55. A. Ablasser, Z. J. Chen, cGAS in action: Expanding roles in
    immunity and inflammation.Science 363 , eaat8657 (2019).
    doi:10.1126/science.aat8657; pmid: 30846571
    56. H. Kato, T. Fujita, RIG-I-like receptors and autoimmune
    diseases.Curr. Opin. Immunol. 37 ,40–45 (2015). doi:10.1016/
    j.coi.2015.10.002; pmid: 26530735
    57. R. H. Silverman, Viral encounters with 2′,5′-oligoadenylate
    synthetase and RNase L during the interferon antiviral
    response.J. Virol. 81 , 12720–12729 (2007). doi:10.1128/
    JVI.01471-07; pmid: 17804500
    58. S. R. Margolis, S. C. Wilson, R. E. Vance, Evolutionary origins of
    cGAS-STING signaling.Trends Immunol. 38 , 733–743 (2017).
    doi:10.1016/j.it.2017.03.004; pmid: 28416447
    59. M. Kazlauskiene, G. Kostiuk,Č. Venclovas,G. Tamulaitis,
    V. Siksnys, A cyclic oligonucleotide signaling pathway in type III
    CRISPR-Cas systems.Science 357 , 605–609 (2017).
    doi:10.1126/science.aao0100; pmid: 28663439
    60. O. Niewoehneret al., Type III CRISPR-Cas systems produce
    cyclic oligoadenylate second messengers.Nature 548 ,
    543 – 548 (2017). doi:10.1038/nature23467; pmid: 28722012
    61. H. Nakayama, K. Otsu, Mitochondrial DNA as an inflammatory
    mediator in cardiovascular diseases.Biochem. J. 475 , 839– 852
    (2018). doi:10.1042/BCJ20170714; pmid: 29511093
    62. L. B. Tolle, T. J. Standiford, Danger-associated molecular
    patterns (DAMPs) in acute lung injury.J. Pathol. 229 ,145– 156
    (2013). doi:10.1002/path.4124; pmid: 23097158
    63. K. Nakahira, S. Hisata, A. M. Choi, The roles of mitochondrial
    damage-associated molecular patterns in diseases.
    Antioxid. Redox Signal. 23 , 1329–1350 (2015). doi:10.1089/
    ars.2015.6407; pmid: 26067258
    64. C. Dahlgren, M. Gabl, A. Holdfeldt, M. Winther, H. Forsman,
    Basic characteristics of the neutrophil receptors that recognize
    formylated peptides, a danger-associated molecular pattern
    generated by bacteria and mitochondria.Biochem. Pharmacol.
    114 ,22–39 (2016). doi:10.1016/j.bcp.2016.04.014;
    pmid: 27131862
    65. H. Carp, MitochondrialN-formylmethionyl proteins as
    chemoattractants for neutrophils.J. Exp. Med. 155 , 264– 275
    (1982). doi:10.1084/jem.155.1.264; pmid: 6274994
    66. S. S. Iyeret al., Mitochondrial cardiolipin is required for Nlrp3
    inflammasome activation.Immunity 39 , 311–323 (2013).
    doi:10.1016/j.immuni.2013.08.001; pmid: 23954133
    67. J. Tschopp, Mitochondria: Sovereign of inflammation?Eur. J.
    Immunol. 41 , 1196– 1202 (2011). doi:10.1002/eji.201141436;
    pmid: 21469137
    68. Z. Zhonget al., NF-kB restricts inflammasome activation via
    elimination of damaged mitochondria.Cell 164 , 896– 910
    (2016). doi:10.1016/j.cell.2015.12.057; pmid: 26919428
    69. K. Shimadaet al., Oxidized mitochondrial DNA activates the
    NLRP3 inflammasome during apoptosis.Immunity 36 , 401– 414
    (2012). doi:10.1016/j.immuni.2012.01.009; pmid: 22342844
    70. A. Liston, S. L. Masters, Homeostasis-altering molecular
    processes as mechanisms of inflammasome activation.
    Nat. Rev. Immunol. 17 , 208–214 (2017). doi:10.1038/
    nri.2016.151; pmid: 28163301
    71. A. P. Westet al., Mitochondrial DNA stress primes the antiviral
    innate immune response.Nature 520 , 553–557 (2015).
    doi:10.1038/nature14156; pmid: 25642965
    72. A. Rodríguez-Nuevoet al., Mitochondrial DNA and TLR9 drive
    muscle inflammation upon Opa1 deficiency.EMBO J. 37 ,
    e96553 (2018). doi:10.15252/embj.201796553;
    pmid: 29632021
    73. M. W. Pellegrinoet al., Mitochondrial UPR-regulated innate
    immunity provides resistance to pathogen infection.
    Nature 516 ,414–417 (2014). doi:10.1038/nature13818;
    pmid: 25274306
    74. K. McArthuret al., BAK/BAX macropores facilitate
    mitochondrial herniation and mtDNA efflux during apoptosis.
    Science 359 , eaao6047 (2018). doi:10.1126/science.aao6047;
    pmid: 29472455
    75. J. S. Rileyet al., Mitochondrial inner membrane permeabilisation
    enables mtDNA release during apoptosis.EMBO J. 37 ,e99238
    (2018). doi:10.15252/embj.201899238; pmid: 30049712
    76. D. Brokatzkyet al., A non-death function of the mitochondrial
    apoptosis apparatus in immunity.EMBO J. 38 , e100907
    (2019). doi:10.15252/embj.2018100907; pmid: 30979778
    77. A. Dhiret al., Mitochondrial double-stranded RNA triggers
    antiviral signalling in humans.Nature 560 , 238–242 (2018).
    doi:10.1038/s41586-018-0363-0; pmid: 30046113
    78. R. B. Seth, L. Sun, C. K. Ea, Z. J. Chen, Identification and
    characterization of MAVS, a mitochondrial antiviral signaling
    protein that activates NF-kappaB and IRF 3.Cell 122 , 669– 682
    (2005). doi:10.1016/j.cell.2005.08.012; pmid: 16125763
    79. T. Okaet al., Mitochondrial DNA that escapes from autophagy
    causes inflammation and heart failure.Nature 485 , 251– 255
    (2012). doi:10.1038/nature10992; pmid: 22535248
    80. S. Sekine, R. J. Youle, PINK1 import regulation: A fine system
    to convey mitochondrial stress to the cytosol.BMC Biol. 16 ,
    2 (2018). doi:10.1186/s12915-017-0470-7; pmid: 29325568
    81. D. P. Narendraet al., PINK1 is selectively stabilized on impaired
    mitochondria to activate Parkin.PLOS Biol. 8 , e1000298
    (2010). doi:10.1371/journal.pbio.1000298; pmid: 20126261
    82. J. N. S. Vargaset al., Spatiotemporal Control of ULK1
    Activation by NDP52 and TBK1 during Selective Autophagy.
    Mol. Cell 74 , 347–362.e6 (2019). doi:10.1016/
    j.molcel.2019.02.010; pmid: 30853401


Youle,Science 365 , eaaw9855 (2019) 16 August 2019 6of7


RESEARCH | REVIEW

Free download pdf