Science - 16.08.2019

(C. Jardin) #1

  1. M. P. Giannoccaro, C. La Morgia, G. Rizzo, V. Carelli,
    Mitochondrial DNA and primary mitochondrial dysfunction in
    Parkinson’s disease.Mov. Disord. 32 , 346–363 (2017).
    doi:10.1002/mds.26966; pmid: 28251677

  2. A. M. Pickrell, R. J. Youle, The roles of PINK1, parkin, and
    mitochondrial fidelity in Parkinson’s disease.Neuron 85 ,
    257 – 273 (2015). doi:10.1016/j.neuron.2014.12.007;
    pmid: 25611507

  3. D. A. Sliteret al., Parkin and PINK1 mitigate STING-induced
    inflammation.Nature 561 , 258–262 (2018). doi:10.1038/
    s41586-018-0448-9; pmid: 30135585

  4. N. Dzamko, C. L. Geczy, G. M. Halliday, Inflammation is
    genetically implicated in Parkinson’s disease.Neuroscience
    302 ,89–102 (2015). doi:10.1016/j.neuroscience.2014.10.028;
    pmid: 25450953

  5. A. F. Cordova, C. Ritchie, G. T. Hess, M. C. Bassik, L. Li,
    SLC19A1 is an importer of the immunotransmitter cGAMP.
    bioRxiv(2019). doi:10.1101/539247

  6. R. Luteijnet al., SLC19A1 is a cyclic dinucleotide transporter.
    bioRxiv(2019). doi:10.1101/539767

  7. A. Ablasseret al., Cell intrinsic immunity spreads to
    bystander cells via the intercellular transfer of cGAMP.
    Nature 503 ,530–534 (2013). doi:10.1038/nature12640;
    pmid: 24077100
    90. T. C. Frank-Cannonet al., Parkin deficiency increases
    vulnerability to inflammation-related nigral degeneration.
    J. Neurosci. 28 , 10825–10834 (2008). doi:10.1523/
    JNEUROSCI.3001-08.2008; pmid: 18945890
    91. D. Matheoudet al., Parkinson’s disease-related proteins PINK1
    and Parkin repress mitochondrial antigen presentation.
    Cell 166 ,314–327 (2016). doi:10.1016/j.cell.2016.05.039;
    pmid: 27345367
    92. D.Matheoudet al., Intestinal infection triggers Parkinson’s
    disease-like symptoms in Pink1-/-mice.Nature 571 , 565– 569
    (2019). doi:10.1038/s41586-019-1405-y; pmid: 31316206
    93. X. Guiet al., Autophagy induction via STING trafficking is a
    primordial function of the cGAS pathway.Nature 567 ,
    262 – 266 (2019). doi:10.1038/s41586-019-1006-9;
    pmid: 30842662
    94. F. Randow, R. J. Youle, Self and nonself: How autophagy
    targets mitochondria and bacteria.Cell Host Microbe 15 ,
    403 – 411 (2014). doi:10.1016/j.chom.2014.03.012
    pmid: 24721569
    95. J. Huet al., Origin and development of oligoadenylate
    synthetase immune system.BMC Evol. Biol. 18 , 201 (2018).
    doi:10.1186/s12862-018-1315-x; pmid: 30587119
    96. Y. F. Linet al., Maintenance and propagation of a deleterious
    mitochondrial genome by the mitochondrial unfolded protein


response.Nature 533 , 416–419 (2016). doi:10.1038/
nature17989; pmid: 27135930


  1. J. C. Greene, A. J. Whitworth, L. A. Andrews, T. J. Parker,
    L. J. Pallanck, Genetic and genomic studies of Drosophila
    parkin mutants implicate oxidative stress and innate immune
    responses in pathogenesis.Hum. Mol. Genet. 14 , 799– 811
    (2005). doi:10.1093/hmg/ddi074; pmid: 15689351

  2. A. Postigo, P. E. Ferrer, Viral inhibitors reveal overlapping
    themes in regulation of cell death and innate immunity.
    Microbes Infect. 11 , 1071–1078 (2009). doi:10.1016/
    j.micinf.2009.08.012; pmid: 19733680

  3. M. J. Whiteet al., Apoptotic caspases suppress mtDNA-induced
    STING-mediated type I IFN production.Cell 159 , 1549–1562 (2014).
    doi:10.1016/j.cell.2014.11.036;pmid:25525874


ACKNOWLEDGMENTS
I thank C. Haynes, R. Silverman, D. Narendra, and members
of the Youle laboratory for thoughtful comments and H. Baldwin
and A. Youle for the figures. This work was supported by the
Intramural Research Program of the National Institute of
Neurological Disorders and Stroke, NIH.

10.1126/science.aaw9855

Youle,Science 365 , eaaw9855 (2019) 16 August 2019 7of7


RESEARCH | REVIEW

Free download pdf