Science - 16.08.2019

(C. Jardin) #1
90 , 113–127 (2016). doi:10.1016/j.neuron.2016.02.010;
pmid: 26971950


  1. G. Rothschild, E. Eban, L. M. Frank, A cortical-hippocampal-
    cortical loop of information processing during memory
    consolidation.Nat. Neurosci. 20 , 251–259 (2017).
    doi:10.1038/nn.4457; pmid: 27941790

  2. S. N. Gomperts, F. Kloosterman, M. A. Wilson, VTA neurons
    coordinate with the hippocampal reactivation of spatial
    experience.eLife 4 , e05360 (2015). doi:10.7554/eLife.05360;
    pmid: 26465113

  3. H. Zhang, J. Fell, N. Axmacher, Electrophysiological
    mechanisms of human memory consolidation.Nat. Commun.
    9 , 4103 (2018). doi:10.1038/s41467-018-06553-y;
    pmid: 30291240

  4. I. Skelin, S. Kilianski, B. L. McNaughton, Hippocampal
    coupling with cortical and subcortical structures in the
    context of memory consolidation.Neurobiol. Learn. Mem.
    160 ,21–31 (2019). doi:10.1016/j.nlm.2018.04.004;
    pmid: 29660400

  5. G. Buzsáki, Two-stage model of memory trace formation:
    A role for“noisy”brain states.Neuroscience 31 , 551– 570
    (1989). doi:10.1016/0306-4522(89)90423-5; pmid: 2687720

  6. T. J. Davidson, F. Kloosterman, M. A. Wilson, Hippocampal
    replay of extended experience.Neuron 63 , 497–507 (2009).
    doi:10.1016/j.neuron.2009.07.027; pmid: 19709631

  7. M. P. Karlsson, L. M. Frank, Awake replay of remote
    experiences in the hippocampus.Nat. Neurosci. 12 , 913– 918
    (2009). doi:10.1038/nn.2344; pmid: 19525943

  8. C. T. Wu, D. Haggerty, C. Kemere, D. Ji, Hippocampal awake
    replay in fear memory retrieval.Nat. Neurosci. 20 , 571– 580
    (2017). doi:10.1038/nn.4507; pmid: 28218916
    35.A.C.Singer,M.F.Carr,M.P.Karlsson,L.M.Frank,
    Hippocampal SWR activity predicts correct decisions during
    the initial learning of an alternation task.Neuron 77 ,
    1163 – 1173 (2013). doi:10.1016/j.neuron.2013.01.027;
    pmid: 23522050

  9. G. Dragoi, S. Tonegawa, Preplay of future place cell sequences
    by hippocampal cellular assemblies.Nature 469 , 397– 401
    (2011). doi:10.1038/nature09633; pmid: 21179088

  10. K. Diba, G. Buzsáki, Forward and reverse hippocampal
    place-cell sequences during ripples.Nat. Neurosci. 10 ,
    1241 – 1242 (2007). doi:10.1038/nn1961; pmid: 17828259

  11. D. J. Foster, M. A. Wilson, Reverse replay of behavioural
    sequences in hippocampal place cells during the awake state.
    Nature 440 , 680–683 (2006). doi:10.1038/nature04587;
    pmid: 16474382

  12. D. K. Roumis, L. M. Frank, Hippocampal sharp-wave ripples in
    waking and sleeping states.Curr. Opin. Neurobiol. 35 ,6– 12
    (2015). doi:10.1016/j.conb.2015.05.001; pmid: 26011627

  13. M. C. Corballis, Mental time travel: A case for evolutionary
    continuity.Trends Cogn. Sci. 17 ,5–6 (2013). doi:10.1016/
    j.tics.2012.10.009; pmid: 23153675

  14. M. F. Carr, S. P. Jadhav, L. M. Frank, Hippocampal replay in the
    awake state: A potential substrate for memory consolidation
    and retrieval.Nat. Neurosci. 14 ,147–153 (2011). doi:10.1038/
    nn.2732; pmid: 21270783

  15. H. Gelbard-Sagiv, R. Mukamel, M. Harel, R. Malach, I. Fried,
    Internally generated reactivation of single neurons in human
    hippocampus during free recall.Science 322 ,96–101 (2008).
    doi:10.1126/science.1164685; pmid: 18772395

  16. S. Khuviset al., Face-selective units in human ventral temporal
    cortex reactivate during free recall.bioRxiv 487686[preprint].
    5 December 2018.

  17. Y. Norman, E. M. Yeagle, M. Harel, A. D. Mehta, R. Malach,
    Neuronal baseline shifts underlying boundary setting during
    free recall.Nat. Commun. 8 , 1301 (2017). doi: 10 .1038/s41467-
    017-01184-1; pmid: 29101322

  18. R. Mukamelet al., Coupling between neuronal firing, field
    potentials, and FMRI in human auditory cortex.Science 309 ,
    951 – 954 (2005). doi:10.1126/science.1110913; pmid: 16081741

  19. J. Parvizi, S. Kastner, Promises and limitations of human
    intracranial electroencephalography.Nat. Neurosci. 21 ,
    474 – 483 (2018). doi:10.1038/s41593-018-0108-2;
    pmid: 29507407

  20. B. O. Watson, M. Ding, G. Buzsáki, Temporal coupling of field
    potentials and action potentials in the neocortex.
    Eur. J. Neurosci. 48 , 2482–2497 (2018). pmid: 29250852

  21. A. Oliva, A. Fernández-Ruiz, G. Buzsáki, A. Berényi, Role of
    Hippocampal CA2 Region in Triggering Sharp-Wave Ripples.
    Neuron 91 , 1342–1355 (2016). doi:10.1016/
    j.neuron.2016.08.008; pmid: 27593179

  22. N. Axmacher, C. E. Elger, J. Fell, Ripples in the medial temporal
    lobe are relevant for human memory consolidation.Brain 131 ,


1806 – 1817 (2008). doi:10.1093/brain/awn103;
pmid: 18503077


  1. R. J. Staba, C. L. Wilson, A. Bragin, I. Fried, J. Engel Jr.,
    Quantitative analysis of high-frequency oscillations (80-500
    Hz) recorded in human epileptic hippocampus and entorhinal
    cortex.J. Neurophysiol. 88 , 1743–1752 (2002). doi:10.1152/
    jn.2002.88.4.1743; pmid: 12364503

  2. Y. Niret al., Coupling between neuronal firing rate, gamma
    LFP, and BOLD fMRI is related to interneuronal correlations.
    Curr. Biol. 17 , 1275–1285 (2007). doi:10.1016/
    j.cub.2007.06.066; pmid: 17686438

  3. H. Hentschke, M. C. Stüttgen, Computation of measures of
    effect size for neuroscience data sets.Eur. J. Neurosci. 34 ,
    1887 – 1894 (2011). doi:10.1111/j.1460-9568.2011.07902.x;
    pmid: 22082031

  4. L. Wang, R. E. B. B. Mruczek, M. J. Arcaro, S. Kastner,
    Probabilistic maps of visual topography in human cortex.
    Cereb. Cortex 25 , 3911– 3931 (2015). doi:10.1093/cercor/
    bhu277; pmid: 25452571

  5. R. S. Desikanet al., An automated labeling system for
    subdividing the human cerebral cortex on MRI scans into
    gyral based regions of interest.Neuroimage 31 ,968– 980
    (2006). doi:10.1016/j.neuroimage.2006.01.021;
    pmid: 16530430

  6. B. Fischlet al., Cortical folding patterns and predicting
    cytoarchitecture.Cereb. Cortex 18 , 1973–1980 (2008).
    doi:10.1093/cercor/bhm225; pmid: 18079129

  7. These six regions are the early and intermediate visual areas
    (including V1/V2/V3/V4 and other retinotopic areas along
    the dorsal stream), lateral occipital cortex, inferior temporal
    gyrus, lingual/parahippocampal gyrus, fusiform gyrus, and
    entorhinal cortex.

  8. S. Takahashi, Episodic-like memory trace in awake replay of
    hippocampal place cell activity sequences.eLife 4 , e08105
    (2015). doi:10.7554/eLife.08105; pmid: 26481131

  9. M. Moscovitch, R. Cabeza, G. Winocur, L. Nadel, Episodic
    Memory and Beyond: The Hippocampus and Neocortex in
    Transformation.Annu. Rev. Psychol. 67 , 105–134 (2016).
    doi:10.1146/annurev-psych-113011-143733; pmid: 26726963

  10. J. O’Neill, B. Pleydell-Bouverie, B. Dupret, J. Csicsvari,
    Play it again: Reactivation of waking experience and
    memory.Trends Neurosci. 33 , 220–229 (2010).
    doi:10.1016/j.tins.2010.01.006

  11. A. Ben-Yakov, Y. Dudai, Constructing realistic engrams:
    Poststimulus activity of hippocampus and dorsal striatum
    predicts subsequent episodic memory.J. Neurosci. 31 ,
    9032 – 9042 (2011). doi:10.1523/JNEUROSCI.0702-11.2011;
    pmid: 21677186

  12. P. Rajasethupathyet al., Projections from neocortex mediate
    top-down control of memory retrieval.Nature 526 , 653– 659
    (2015). doi:10.1038/nature15389; pmid: 26436451

  13. S. M. Polyn, V. S. Natu, J. D. Cohen, K. A. Norman, Category-
    specific cortical activity precedes retrieval during memory
    search.Science 310 , 1963– 1966 (2005). doi:10.1126/
    science.1117645; pmid: 16373577

  14. A. P. Vaz, S. K. Inati, N. Brunel, K. A. Zaghloul, Coupled ripple
    oscillations between the medial temporal lobe and neocortex
    retrieve human memory.Science 363 , 975–978 (2019).
    doi:10.1126/science.aau8956; pmid: 30819961

  15. S. M. Smith, Fast robust automated brain extraction.Hum.
    Brain Mapp. 17 ,143–155 (2002). doi:10.1002/hbm.10062;
    pmid: 12391568

  16. M. Jenkinson, S. Smith, A global optimisation method for
    robust affine registration of brain images.Med. Image Anal. 5 ,
    143 – 156 (2001). doi:10.1016/S1361-8415(01)00036-6;
    pmid: 11516708

  17. M. Jenkinson, P. Bannister, M. Brady, S. Smith, Improved
    optimization for the robust and accurate linear registration and
    motion correction of brain images.Neuroimage 17 , 825– 841
    (2002). doi:10.1006/nimg.2002.1132; pmid: 12377157

  18. X. Papademetriset al., BioImage Suite: An integrated medical
    image analysis suite: An update.Insight J. 2006 , 209 (2006).
    pmid: 25364771

  19. B. Fischl, FreeSurfer.Neuroimage 62 , 774–781 (2012).
    doi:10.1016/j.neuroimage.2012.01.021; pmid: 22248573

  20. T. Golanet al., Human intracranial recordings link suppressed
    transients rather than‘filling-in’to perceptual continuity
    across blinks.eLife 5 , e17243 (2016). doi:10.7554/eLife.17243;
    pmid: 27685352

  21. B. D. Argall, Z. S. Saad, M. S. Beauchamp, Simplified
    intersubject averaging on the cortical surface using SUMA.
    Hum. Brain Mapp. 27 ,14–27 (2006). doi:10.1002/hbm.20158;
    pmid: 16035046
    71. A.Delorme, S. Makeig, EEGLAB: An open source toolbox for
    analysis of single-trial EEG dynamics including independent
    component analysis.J. Neurosci. Methods 134 ,9–21 (2004).
    doi:10.1016/j.jneumeth.2003.10.009; pmid: 15102499
    72. H. Bokil, P. Andrews, J. E. Kulkarni, S. Mehta, P. P. Mitra,
    Chronux: A platform for analyzing neural signals.J. Neurosci.
    Methods 192 ,146–151 (2010). doi:10.1016/j.
    jneumeth.2010.06.020; pmid: 20637804
    73. K. J. Milleret al., Broadband changes in the cortical surface
    potential track activation of functionally diverse neuronal
    populations.Neuroimage 85 , 711–720 (2014). doi:10.1016/
    j.neuroimage.2013.08.070; pmid: 24018305
    74. P. P. Mitra, B. Pesaran, Analysis of dynamic brain imaging
    data.Biophys. J. 76 , 691–708 (1999). doi:10.1016/S0006-
    3495(99)77236-X; pmid: 9929474
    75. P. Mitra,Observed Brain Dynamics(Oxford Univ. Press, 2007).
    76. Y. Benjamini, D. Yekutieli, The control of the false discovery
    rate in multiple testing under dependency.Ann. Stat. 29 ,
    1165 – 1188 (2001).
    77. J. E. Iglesiaset al., A computational atlas of the hippocampal
    formation using ex vivo, ultra-high resolution MRI: Application
    to adaptive segmentation of in vivo MRI.Neuroimage 115 ,
    117 – 137 (2015). doi:10.1016/j.neuroimage.2015.04.042;
    pmid: 25936807
    78. E. Starket al., Pyramidal cell-interneuron interactions underlie
    hippocampal ripple oscillations.Neuron 83 , 467–480 (2014).
    doi:10.1016/j.neuron.2014.06.023; pmid: 25033186
    79. E. W. Schomburget al., Theta phase segregation of input-
    specific gamma patterns in entorhinal-hippocampal networks.
    Neuron 84 , 470–485 (2014). doi:10.1016/j.
    neuron.2014.08.051; pmid: 25263753
    80. L. D. Fiedereret al.,Electrical Stimulation of the Human
    Cerebral Cortex by Extracranial Muscle Activity: Effect
    Quantification With Intracranial EEG and FEM Simulations.IEEE
    Trans. Biomed. Eng. 63 , 2552–2563 (2016). doi:10.1109/
    TBME.2016.2570743; pmid: 27448334
    81. J. N. Gelinas, D. Khodagholy, T. Thesen, O. Devinsky,
    G. Buzsáki, Interictal epileptiform discharges induce
    hippocampal-cortical coupling in temporal lobe epilepsy.
    Nat. Med. 22 , 641–648 (2016). doi:10.1038/nm.4084;
    pmid: 27111281
    82. R. J. Stabaet al., High-frequency oscillations recorded in
    human medial temporal lobe during sleep.Ann. Neurol. 56 ,
    108 – 115 (2004). doi:10.1002/ana.20164; pmid: 15236407
    83. D. W. Scott, On Optimal and Data-Based Histograms.
    Biometrika 66 , 605–610 (1979). doi:10.1093/biomet/66.3.605
    84. L. J. P. van der Maaten, E. O. Postma, H. J. van den Herik,
    Dimensionality reduction: A comparative review.J. Mach.
    Learn. Res. 10 ,66–71 (2009).
    85. E. Levina, P. Bickel, Maximum likelihood estimation of intrinsic
    dimension.Adv. Neural Inf. Process. Syst. 17 , 777–784 (2004).
    86. A. S. Ghumanet al., Dynamic encoding of face information
    in the human fusiform gyrus.Nat. Commun. 5 , 5672 (2014).
    doi:10.1038/ncomms6672; pmid: 25482825
    87. C. Jacqueset al., Corresponding ECoG and fMRI category-
    selective signals in human ventral temporal cortex.
    Neuropsychologia 83 ,14–28 (2016). doi:10.1016/
    j.neuropsychologia.2015.07.024; pmid: 26212070
    88. D. M. Groppe, T. P. Urbach, M. Kutas, Mass univariate analysis
    of event-related brain potentials/fields I: A critical tutorial
    review.Psychophysiology 48 , 1711–1725 (2011). doi:10.1111/
    j.1469-8986.2011.01273.x; pmid: 21895683
    89. R. Oostenveld, P. Fries, E. Maris, J.-M. Schoffelen, FieldTrip:
    Open source software for advanced analysis of MEG, EEG, and
    invasive electrophysiological data.Comput. Intell. Neurosci.
    2011 , 156869 (2011). doi:10.1155/2011/156869;
    pmid: 21253357
    90. E. Maris, R. Oostenveld, Nonparametric statistical testing of
    EEG- and MEG-data.J. Neurosci. Methods 164 ,177– 190
    (2007). doi:10.1016/j.jneumeth.2007.03.024;
    pmid: 17517438
    91. Images shown to patients are protected by copyright. Images
    presented in the figure are similar substitutes. Photo of Bill
    Clinton courtesy of Gage Skidmore; photo of the Golden Gate
    Bridge courtesy of Nicolas Raymond; photo of the Leaning
    Tower of Pisa courtesy of Josu; photo of Barack Obama
    courtesy of the U.S. government. All pictures are published
    under a Creative Commons license.


ACKNOWLEDGMENTS
We are grateful to the patients for their kind cooperation. Y.N.
thanks his wife and his daughter for their continuous and loving
support. We thank R. Amit, O. Sharon, R. Broday-Dvir, and

Normanet al.,Science 365 , eaax1030 (2019) 16 August 2019 13 of 14


RESEARCH | RESEARCH ARTICLE

Free download pdf