3.Sol:
Miscellaneous
1.Sol:
2.Sol:
3.Sol:
1 2 3
x x x ... xn
n
and
2 2 2
x x 1 2 ... xn
n
Also given mean and standard deviations of
new list of numbers y 1 , y 2 ,.., yn are
ˆ y y^12 ... yn^0 x x^23 ... x x xn^11 n
n n
and
2 2 2
ˆ y y^12 ... yn
n
2 2 2 2 2
0 x x 2 3 ... xn 1 (x x 1 n)
n
2 2 2 2 2 2
0 x x 2 3 ... x x xn 1 1 n 2 x x 1 n
n
Therefore ˆ.
3.Sol: Given information is represented in the
diagram as below
From the diagram, we get
1 3 3 5 2011 1
2 2 , 4 2 ,..., (^20122)
a a a a a a
a a a
That yields
2 2 2 ... 2a 2 a 4 a 6 a 2012 a a a 1 3 5
... a 2011 a 1
(^) a a a 1 3 5 ... a 2011 a 1.
But we a a a 2 4 6 ... a 2012 3018.
Which yields that a a a 1 3 5 ... a 2011 3018.
Therefore the sum of all numbers is
a a a 1 2 3 ... a 2011 2(3018) 6036.
Miscellaneous
1.Sol: We know q 0 .Now we try to
prove
22
21
p
q
i.e
22
21 21
p
q
we take
20 20
1 1
1 1 1
21 20 i i (^21) i i
p
q a
a
20 20
1 2 1
1 1 1
(^20) i 1 21i
i
i
i i
20 20
1 2 1
1 1 1
2 20 i 1 i 21
i
i i
20 20
1 2 1
1 1 1 1
2 20 2 i 1 i 21
i
i i
20 20
1 1
1 1 1 2 1
0 1 1
2 20 2 5 i (^21) i
1 1 1 2 1
19 20
2 20 2 5 21
1 1 22
1 8 1
2 20 21
2.Sol: Using Fermat‘s little theorem , we have,
If 5 |athen we have a^4 1 mod 5. That
is a^2 1 mod 5. If 5|z, then we are done
with z x y(^2 ^2 ). Otherwise we have
2 z^2 2 mod 5. That is 2 x y^22 , which
yields that x^2 1 mod 5 and y^2 1 mod 5 or
x^2 1 mod 5. Thus x y^2 ^2 is divisible by 5.
Likewise ,The same procedure can be done
with mod 3 of 3 | z. Otherwise if 3 divides z
then 3 divides x y^2 ^2 .Which yields that 3
divides x and y. so 3 divides x + y and x - y.
3.Sol: Here the phrase non-congruence triangle
represents counting un-ordered triplets. That
is the given condition is divided into three cases