Mathematics Times – July 2019

(Ben Green) #1

  1. If


5

is equal to : [2016]
(a) 4 (b) 13 (c)

(c)

51 63
84 72

 
 
 

(d)

51 84
63 72

 
 
 

3 2

a b
A

  
 
 

and A adjA AA T, then 5 a b

 1 (d) 5


  1. The system of linear equations


has a non-trival solution for : [2016]
(a) Exactly two values of


  1. The set of all values of


x y z   0
x y z   0
x y z   0

.
(b) Exactly three values of .
(c) Infinitely many values of .
(d) Exactly one value of .
 for which the system of
linear equations : [2015]
2 2x x x x 1  2   3  1
2 3 2x x x x 1  2  3  2
 x x x 1 22  3 has a non-trivial solution,
(a) Contains two elements
(b) Contains more than two elements
(c) Is an empty set.
(d) Is a singleton


  1. If  , 0, and f n( ) n n and


3 1 (1) 1 (2)
1 (1) 1 (2) 1 (3)
1 (2) 1 (3) 1 (4)

f f
f f f
f f f

 
  
  
k(1 ) (1 ) (^2   ^2  ) ,^2 then k is equal to
[2014]

(a)  (b)

1
 (c) 1 (d) -1


  1. The number of values of k for which the linear
    equations [2013]
    4 x ky z  2 0
    kx y z   4 0
    2 2x y z   0
    possesses a non-zero solution is
    (a) zero (b) 3 (c) 2 (d) 1


10.The number of values of k, for which the system
of equations: [2013]

has no solution, is
(a) Infinite (b) 1 (c) 2 (d) 3

CONTINUITY & DIFFERENTIABILITY
[ONLINE QUESTIONS]


  1. If the function f defined as


( 1) 8 4k x y k  
kx k y k ( 3) 3 1 

2
( )^11 , 0
x 1
f x k x
x e

   
 , is continuous at x^0 ,
then the ordered pair ( , (0))k f is equal to: [2018]

(a) (2,1) (b) (3,1) (c) (3,2) (d)


  1. Let


1
,2
3

 
 

S{ , }   R R f t: ( ) ( et).sin(2 ),t t R ,
is a differentiable function}. Then S is a subset
of: [2018]
(a)  ,0 R (b)R [0, )
(c) [0, ) R (d) R ( ,0)


  1. The value of k for which the function


 

tan 4
4 tan5
, 0
5 2

(^2) ,
5 2
x
x
x
f x
k x


 
   
 

  

is continuous at ,
2
x is : [2017]
(a)



  1. If


2
5 (b)

2
5

 (c)

3
5 (d)

17
20
1 1
2 x y y ^5 ^5 and

 
2 2
1 2 0,

d y dy
x x ky
dxdx

    then k is equal

to [2017]
(a) -23 (b) -24 (c) 26 (d) -26


  1. Let f be a polynomial function such that


f x f x f x x R (^3)  '  '' ,   . Then : [2017]
(a)
5.
[2016]
6.
[2016]
7.
[2015]
8.
[2014]
9.
[2013]
10.
[2013]
CONTINUITY & DIFFERENTIABILITY
[ONLINE QUESTIONS]



  1. [2018]


  2. [2018]




  3. [2017]




  4. [2017]




  5. [2017]
    f 2 f' 2 28 



Free download pdf