Mathematics Times – July 2019

(Ben Green) #1

CONTINUITY & DIFFERENTIABILITY
[ONLINE QUESTIONS]



  1. b 2. b 3. c 4. b 5. b

  2. d 7. a 8. d 9. c 10. b

  3. d 12. b 13. b 14. c 15. a

  4. c 17. a 18. b 19. a 20. b

  5. d 22. b 23. d


CONTINUITY & DIFFERENTIABILITY
[ONLINE QUESTIONS]





















































































DETERMINANTS [ONLINE QUESTIONS]
1.Sol: For no solution


2 10
3 1

k k
k k k

  
 
( 2)( 3) 10k k   k
k k^2     5 6 0 k 2,3
k 2 for k 2 both lines identical
so k 3 only
 number of values of k is 1

2.Sol: Given^2


cos 1
( ) 2sin 2
tan 1

x x
f x x x x
x x


x x x^2 tan cos 

lim '  lim2 tan cos ^2 (sec sin )^2
x x

f x x x x x x x
 x  x

  
 

=limx2 tan cosx x x x   (sec sin )^2 x x


=-2


3.Sol: Given


0 cos sin
sin 0 cos 0
cos sin 0

x x
x x
x x



i.e., 0 0 sin cos cos 0 cos  x x   ^2 x
sin sinx x^2  0 0
 cos sin^3 x^3 x 0
i.e.,tan 1^3 x

Now

tan tan
tan^3

(^3) 1 tan tan
3
x
x
x



  
  
  
3 1
1 3



3 1 2 3
x s1 3
    



4.Sol: We know adj adjA A A  n^2
Given n 3
i.e.,adj adjA A A 


  1. Sol: Given the system of linear equations has
    infinitely many solutions.


i.e.,


  1. Sol:


2

2 4
4 2 0
2 2





 

 ^3 20 40 0 
  has only one root and it lies between 3.05
and 3.
4 1 4 1 4 1
3 1 3 1 3 1

A A

       
     
     
13 3
9 2

 
 
  and A1.

Now, A^2016 ^2 A A^2015 ^2014 A A A I^2014 ^2 ^2  

A^2016  2 A A^2015 ^2014  A A A I^20142  2 

2014 20 5 25
15 5

A  
 

7.Sol: Given

DETERMINANTS [ONLINE QUESTIONS]
1.Sol:


2.Sol:


3.Sol:


4.Sol:


  1. Sol:

  2. Sol:


7.Sol:

cos sin sin
sin cos sin 0
sin sin cos

x x x
x x x
x x x


C C C C 1    2 3 ,

i.e.,

cos 2sin sin sin
cos 2sin cos sin 0
cos 2sin sin cos

x x x x
x x x x
x x x x


 

Now  

1 sin sin
cos 2sin 1 cos sin 0
1 sin cos

x x
x x x x
x x

 

R R R 1   2 1
R R R 2   3 2

i.e.,  

0 sin cos 0
cos 2sin 0 cos sin sin cos 0
1 sin cos

x x
x x x x x x
x x


   
Free download pdf