Now        1
1
22 1 3 21
2
1 1 3 4
1 1
2 2n
r rr r r
n
n an n
n n n
       
 
We know 
   (^112)
1 1
1
; 2 1 1 ;
2
n n
r r
n n
r r n
 
 
     
 (^1)   
1
1 3 4
3 2
2
n
r
n n
r
 
  
 
    
   21
1
21 1 3 4
1
2 2
1
2
1 1 3 4
1
2 2n
r
rn n n n
nn
n an n n n
n
  
     
(^)  0 R R 1  2 
Hence, value of
1
1
n
r
r
 is independent of both ‘a’
and ‘n’- Sol: Given
     
     (^222222)
2 2 2
(^222) 1 1 1
a b c a b c
a b c k a b c
a b c
   
  
   
  
Now, we take L.H.S      
     
2 2 2
2 2 2
2 2 2
a b c
a b c
a b c
  
  
  
  
R R R 2   3 2
     
2 2 2
2 2 2
4 4 4
a b c
a b c
a b c
  
  
  
     
2 2 2
2 2 2
4
a b c
a b c
a b c
  
  
  
R R R R 3   3  1  2 2 
- Sol:
16.Sol:17.Sol:2 2 22 2 24a b c
a b c  
  2 2 2
4 3
1 1 1a b c
  a b c2 2 21 1 1a b c
k a b c given k 4 ^216.Sol: Given1 2 3 0 0 1
0 2 3 1 0 0
0 1 1 0 1 0A   
   
   
    Applying C C 1  3
3 2 1 1 0 0
3 2 0 0 0 1
1 1 0 0 1 0A   
   
   
    
Again Applying C C 2  33 1 2 1 0 0
3 0 2 0 1 0
1 0 1 0 0 1A   
   
   
    pre-multiplying both sides by A^11 13 1 2 1 0 0
3 0 2 0 1 0
1 0 1 0 0 1A A A   
   
   
   1 13 1 2
3 0 2
1 0 1I A I A  
  
 
 A A I I^1  and identity matrix Hence,13 1 2
3 0 2
1 0 1A 
 
 
 
17.Sol: Given system of equations can be written as
a x y z^1    ^0  x b y z (^1)    0
   x y c z 1 0 
