Now 1
1
22 1 3 21
2
1 1 3 4
1 1
2 2n
r rr r r
n
n an n
n n n
We know
(^112)
1 1
1
; 2 1 1 ;
2
n n
r r
n n
r r n
(^1)
1
1 3 4
3 2
2
n
r
n n
r
21
1
21 1 3 4
1
2 2
1
2
1 1 3 4
1
2 2n
r
rn n n n
nn
n an n n n
n
(^) 0 R R 1 2
Hence, value of
1
1
n
r
r
is independent of both ‘a’
and ‘n’- Sol: Given
(^222222)
2 2 2
(^222) 1 1 1
a b c a b c
a b c k a b c
a b c
Now, we take L.H.S
2 2 2
2 2 2
2 2 2
a b c
a b c
a b c
R R R 2 3 2
2 2 2
2 2 2
4 4 4
a b c
a b c
a b c
2 2 2
2 2 2
4
a b c
a b c
a b c
R R R R 3 3 1 2 2
- Sol:
16.Sol:17.Sol:2 2 22 2 24a b c
a b c
2 2 2
4 3
1 1 1a b c
a b c2 2 21 1 1a b c
k a b c given k 4 ^216.Sol: Given1 2 3 0 0 1
0 2 3 1 0 0
0 1 1 0 1 0A
Applying C C 1 3
3 2 1 1 0 0
3 2 0 0 0 1
1 1 0 0 1 0A
Again Applying C C 2 33 1 2 1 0 0
3 0 2 0 1 0
1 0 1 0 0 1A
pre-multiplying both sides by A^11 13 1 2 1 0 0
3 0 2 0 1 0
1 0 1 0 0 1A A A
1 13 1 2
3 0 2
1 0 1I A I A
A A I I^1 and identity matrix Hence,13 1 2
3 0 2
1 0 1A
17.Sol: Given system of equations can be written as
a x y z^1 ^0 x b y z (^1) 0
x y c z 1 0