Mathematics Times – July 2019

(Ben Green) #1
y az  0
z ax  0
1 0
0 1
0 1

a
A a
a

 
  
 
 

Now, | | [1 ( )] 1A  a a^2   a^30
So, system has only trivial solution.
Now, | | 0A only when a  1
So, system of equations has infinitely many
solutions which is not possible because it is given
that system has a unique solution. Hence set of all
real values of ‘a’ is R { 1}


  1. Sol: 1


1 sin cos
1 cos sin
1 sin cos

 
 
 

 
 
R R R R R R 1   2 1 ; 2   3 2

0 sin cos cos sin
0 cos sin sin cos
1 sin cos

   
   
 

 
  

   
sin cos ^2 cos^2 sin^2 

2sin^2 2sin .cos 
2sin sin cos  

Now, 4 in 0, 2
  
 
 
   1 2 sin 0 0,  

Since value of sin is finite for 0, 2


 
 
Hence non-trivial solution for only one value of

 in 0, 2

 
 

cos sin cos
sin cos sin 0
cos sin cos

  
  
  


 

C C C 1   2 1

0 sin cos
0 cos sin 0
2cos sin cos

 
 
  

 
 

2cos sin^2 cos^2 ^0

cos 0 or sin^2 cos^2  0
But cos 0 not possible for any value of

0,
2


 
 
sin^2 cos^2  0 sin cos , which

is also not possible for any value of 0, 2
 
 

Hence, there is no solution.
23.Sol: Given system of equations can be written in
matrix form as AX B where
1 2 3 6
1 3 5 and 9
2 5

A B
a b

   
   
   
   
   
Since, system is consistent and has infinitely many
solutions
3 25 15 2 1 6 0
10 6 2 9 0
1 1 1 0

a a
a a
b

      
      
    
      
    
      6 9 b 0 b 15

and 6 10  a a 9 6 2   b 0
     60 6 9 54 30 0a a
   3 24a a 8
Hence, a b8, 15.

[OFFLINE QUESTIONS]

1.Sol: now,


  1. Sol:
    23.Sol:


[OFFLINE QUESTIONS]

1.Sol:

2

4 2 2
2 4 2 ( )( )
2 2 4

x x x
x x x A Bx x A
x x x


   

Put

3

4 0 0
0 0 4 0 4
0 0 4

x A A


      
Free download pdf