^2
51 63
3 12
84 72
adj A A
5.Sol: Given A adjA AA T
A A adjA A AA^1 ^1 T
adjA A T
2 5 3
3 5 2
b a
a b
(^2) and 3
5
a b
5 a b 5
- Sol: For trivial solution, we have
1 1
1 1 0
1 1
(^1) 1 0
0, 1, 1
7.Sol:
1 2 3 1
1 2 3 2
1 2 3
2 2
2 3 2
2
x x x x
x x x x
x x x
rewrite the given equation as
2 x x x 1 22 3 0
2 x 1 3 x x 2 2 0 3
x x x 1 22 3 0
For non-trivial solution, we have
0
i.e.,
2 2 1
2 3 2 0
1 2
2 3 4 2 2 2
1 4 3 0
^32 5 3 0
1,1, 3
Hence has 2 values.
8.Sol: Given f n n n
f (^1) , 2f ^2 ^2 , 3f ^3 ^3 ,
and f 4 ^44
Let
3 1 1 1 2
1 1 1 2 1 3
1 2 1 3 1 4
f f
f f f
f f f
i.e.,
2 2
2 2 3 3
2 2 3 3 4 4
3 1 1
1 1 1
1 1 1
5.Sol:
- Sol:
7.Sol:
8.Sol:
9.Sol:
- Sol:
2
2 2 2 2 2 2
1 1 1 1 1 1 1 1 1
1 1 1
1 1 1
On expanding, we get
1 ^21 ^2 ^2
k 1 ^21 ^2 ^2 1 ^21 ^2 ^2
k 1
9.Sol: For non-trivial solution of the given system of
linear equations
4 2
4 1 0
2 2 1
k
k
8 (2 ) 2(2 8) 0k k k
k k^2 6 8 0
k2,4
Clearly there exists two values of k.
- Sol:
1 8 (^2) 4 3 8
3
k
k k k
k k
(^) k k^2 4 3
( 3)( 1)k k
2
1
4 8
4 12 24 8
3 1 3
k
k k k
k k
(^) 4 12 8k k^2
4( 3 2)k k^2
4( 2)( 1)k k