Mathematics Times – July 2019

(Ben Green) #1

2.Sol:


 It has only one common root
i.e., it has only one solution.

CONTINUITY & DIFFERENTIABILITY
[ONLINE QUESTIONS]

1.Sol: (^2)
( )^11 ; 0
x 1
f x k x
x e
   

f x( ) is continuous at x 0
i.e., 0 2
(0) lim^11
x x 1
f k
 x e
  

2
0 2 2
(1 2 ) (2 ) .....( 1 ( 1)^1
lim 2!
2 1
2
x x
x x x k
x e
x

     

  
 
 
Clearly k 3 and f(0) 1
S( , )  R R f t: ( ) (1 e| |t)sin2| |,t t R 
f t t e( ) (| | | |t)sin 2 | |t
| | sin 2 0
| | sin 2 0
t
t
t e t t
e t t

  
  

  
'( ) | | sin 2 (| | )(2cos2 )^0
| | sin 2 (| | )( cos2 ) 0
t t
t t
f t e t e t t
e t e t t
  
    
   

    
Given f t( ) is differentiable
i.e. LHD = RHD at t^0
| | sin(20) (| |   e)cos( )
| | sin 2( ) 2cos(0)(| | e    e)
 0 (| | )2 0 2(| |     e)
| |   0
i.e. | | . 
 S( , )    R and (0, )
Set S is subset of R [0, )
3.Sol:    
2 2
lim lim
x x^2
f x f x f
 

 
   
  
4 2
5 5
     k
 

i.e.,
(^21)
5
k 
3
5
 k
4.Sol: Given
1 1
2 x y y^55

 
differentiating with respect to x,
we get
4 6
2 1 5 1 5
5 5
dy
y y
dx
   
   
 
i.e.,
1 1
5 5 2
2
(^10) 4 4
2 1
dy y y y x
dx x
  
     
  

dy 2 x (^2) 1 10y
dx
 
dy x (^2) 1 5y
dx
  
again differentiating with respect to x,
we get  
2
2
(^22)
2 1 4 10
2 1
d y x dy x
dx dx x
  

 
(^222)
2 1 5 1
d y dy
x x x
dx dx
    
 
2 2
1 2 25
x d y dyx y
dxdx
   
i.e., 
CONTINUITY & DIFFERENTIABILITY
[ONLINE QUESTIONS]
1.Sol:
2.Sol:
3.Sol:
4.Sol:
5.Sol:
2 2
1 2 25 0
d y dy
x x y
dxdx
   
i.e.,1, k  25
     k 1 25 24
5.Sol: Given that f x f x f x 3  '  '' 
The trick to such questions is to assume a function
that will help us to solve the answer fast.
Let f x ax bx cx d ^3 ^2  
f x ax bx c'  3 2  2 
and f x ax b'' 6 2
f x f x f x 3  '  '' 
(^3) , 0
2
 a b c d  

Free download pdf