Now ^3 ^2
3 9
'
2 2
f x x f x x and
f x x'' 9
i.e., ^2
9
' 2 2 18
2
f and f'' 2 18
f' 2 f'' 2 f'' 2 f' 2 0
6.Sol: Given
2 15 2 15
y x x 1 x x 1
2 14
15 1 1 (^21)
dy x x x
dx x
2 14
15 1 1 (^21)
x
x x
x
2
(^15).
1
dy y
dx x
^21 ^15
x dy y
dx
after differentiating with respect to x, we get
2
2
2 1 2 15
1
x dy x d y dy
x dx dx dx
2 2 2
(^22)
15
1 15 1.
1
dy d y
x x x y
dx dx x
225 y
7.Sol: Given that f x is continuous in the interval
[0, )
it is continuous at x1, 2
xlim 1 f x xlim 1 f (^1)
i.e.,
2
0
2 1
limx
h
a
a
a^2 2
i.e.,a 2
nowxlim 2 f x xlim 2 f x f ^2
i.e.,
2
0 3
2 4
lim
h 2
b b
a
h
a 2 { Continuous at x 2 }
2 4^2
2 2
b b
a
i.e.,2 4 4b b^2
b b^2 2 2 0
b 1 3
b 1 3
Hence a b, 2,1 3
8.Sol: Given f x is differentiable at x 1
i.e.,
0 0
1 1 1 1
limh limh
f h f f h f
h h
(^1) (^1)
0
cos 1 cos 1
1 limh
h b b
h
i.e., 2
1
1
1 1 b
b 1
Now, limx 1 f x limx 1 f x
xlim 1 1 h lim cos 1h^0 a ^1 h b
i.e., ^1 a cos 1^1 b
1 a cos 0^1
i.e.,^1
2
a
1
2
a
Now
6.Sol:
7.Sol:
8.Sol:
9.Sol:
2
2
a
b
9.Sol: Given that the function is continuous.
^ f x is Continuous at x 0
limx 0 f x 12