Now
2
0
1
lim 12
sin log 1
4
x
x
e
x x
k
2
0
1
lim.
sin
x
x
x
e k
k
x x
k
(^412)
cos 1^4
4
x
x
i.e., 1.. 1 .4 12^2 k
k 3
10.Sol: We have
1 1 '^10
2
f f f
i.e.,f ^1 f^1 c^2
Now
1 1
' 0
2 2
f b
Now 2 b c 1 2 1
11.Sol: Given f x is continuous at x
i.e.,limxf x f
Now
^2 ^2
lim 2 cos 1 lim 1 cos
x x 2 cos 1
x x
x x x
2
2
2cos 1
lim^2
4 2cos 1
2 2
x
x
x x
1 1 1
2 1 1 4
- Sol: Given
9 2
2 9
f
Now
2
0 2 0 2
2sin^3
1 cos3 2
limx limx
x
x
f f
x x
2
0 2
3
sin
lim^92
(^23)
2
x
x
f
x
9 2
2 9
f
13.Sol: Given f x x ^2
Now
0
0
' 0 lim
h 0
f h f f h
f
h h
We know
f h
h
h
h f h h
h
limx 0 0
f h
h
i.e.,f' 0 0
f x is differentiable at x0, which implies
continuity
f x x x R ^2 , is continuous as well as
differentiable at x0.
14.Sol:
1
sin , 0
( )
0 , 0
x x
f x x
x
0
lim sin^1 0 (0)
x x x f
Hence f(x) is continuous function
g(0) 0 lim ( ) x 0 g x
L.H.D:
x 0
limg(0 h) g(0)
h
2
x 0
1
h sin 0
lim h
h
LHD = 0
R.H.D:
h 0
limg(o h) g(0)
h
10.Sol:
11.Sol:
- Sol:
13.Sol:
14.Sol:
L.H.D:
R.H.D:
15.Sol:
2
h 0
1
h sin 0
lim n
h
RHD = 0
LHD = RHD
Hence g x at x 0 is differentiable.
15.Sol: f x x x ^25
Given g x is inverse of f x