(c)
1
lim ( )
n 2
f n
(d) If tan(cos (6)), then^1 f ^2 2 1
0
5.Let f R R: be a function we say that f
has
Property 1: If^0
( ) (0)
limh
f h f
h
exist and is
finite, and
Property 2: If 0 2
( ) (0)
limh
f h f
h
exist and is
finite.
Then which of the following options is/are
correct?
(a) f x x( ) has property 1
(b) f x x( ) 2/3 has property 1
(c) f x x x( ) has property 2
(d) f x( ) sin x has property 2
6.For a R a , 1 , let
3 3
7/3
2 2 2
lim 1 2 .... 54
(^11) ... 1
( 1) ( 2) ( )
n
n
n
na na na n
Then possible value(s) a is/are –
(a) -9 (b) -6 (c) 7 (d) 8
7.Let^12
1 0 0 1 0 0
0 1 0 , 0 0 1 ,
0 0 1 0 1 0
P I P
3
0 1 0
1 0 0
0 0 1
P
,^4
0 1 0
0 0 1
1 0 0
P
,
5
0 0 1
1 0 0
0 1 0
P
,^6
0 0 1
0 1 0
1 0 0
P
, and
6
1
2 1 3
1 0 2
3 2 1
T
X Pk k Pk
.
Where PkT denotes the transpose of matrix Pk.
Then which of the following options is/are
correct?
(a) X-30I is an invertible matrix
(b) The sum of diagonal entries of X is 18
(c) If
1 1
1 1
1 1
X
, then 30
(d) X is a symmetric matrix
- Let
2
sin
( ) , 0
x
f x x
x
Let x x x x 1 2 3 .... n ....be all points of
local maximum of 1 and y y y 1 2 3 ....yn
...be all the points of local minimum of f.
Then which of the following options is/are
correct?
(a) x y 1 1
(b) x xn 1 n 2 for every n
(c)
1
2 ,2
n 2
x n n
for every n
(d) x yn n 1 for every n
SECTION-II
- Suppose
2
0 0
0 0
det 0
3
n n n
k k k
n n n n k
k k k k
k C k
C k C
holds for some positive integer n. Then
Property 1:
Property 2:
8.
SECTION-II
9.
10.
0 1
n n
k
k
C
k
equals.
- The value of
1 10
0
1 7 7 ( 1)
sec sec sec
(^4) k 12 2 12 2
k k