Mathematics Times – July 2019

(Ben Green) #1

x0,5 for which F x  0. Hence (D) is
correct.
2.Sol: If P, Q and R are collinear, then


1
1 1

PQ kPR

 
 

 
   
  

 

^

1 1
1
1


 

  

Therefore,  cannot take value of 1 and 0.
i.e., 0,1.

3.Sol: We have


2.Sol:


3.Sol:


4.Sol:

det ( ) det (^1 ) (det )(det )^1
det

R PQP P Q
P

    
 
 
det( )Q
i.e., det ( ) 48 4R   x^2
Consider option (a), we have x 1. That is,
det( ) 44 0R  

Therefore the equation

0
0
0

R




   
   
   
      
will have trival solution. i.e.,      0.
now consider option (b), in which we have
given, PQ QP
i.e., PQP QI Q^1  

^ R Q
 No value of x satisfies this condition
likewise consider option (c), we have given
2
det 0 4 0 8
5

x x

x x

 
 
 
 
(40 4 ) 8 x^2 

48 4 x^2
det ( ),R x R 
So option (c) is correct.

2 1 2/3
0 4 4/3
0 0 6

R

 
 
 
 

and finally consider option

(d), we have
1
(R I a6 ) 0
b

 
  
 
  

i.e.,

2
4 0
3

b
  a 


4
2 0
3

b
 a 

a 2 and b 3
^ a b  5
So option (d) is correct
finally consider option (d) which is.
4.Sol: rewrite the given function as

0

0

2 3
cos cos
2 2
( )
2 2
1 cos
2

n

k
n

k

k
n n
f n
k
n






      
     
       

   
    
    



0

0

2 3
( 1)cos
2 2
( )
( 1) cos 2 2
2

n

k
n

k

k
n
n n
f n
n k
n






      
     
       

    
    
   



sin ( 1)
( 1)cos^2 cos^3

(^2) sin 2
( )^2
sin ( 1)
( 1)^2 cos 2( 2)
sin 2( 2)
2
n
n n n
n n
f n n
n
n n n
n
n

 




    
       
     
       
    
  
    
      
    
     
    
 
i.e.,
( 1)cos cos
( )^22
( 1) 1
n
f n n n
n
     
    
      
 
( ) cos
2
f x
n
  
   
  
now consider option (a), we have
sin 7cos cos^1 sin 0
7

   
 

Free download pdf