x0,5 for which F x 0. Hence (D) is
correct.
2.Sol: If P, Q and R are collinear, then
1
1 1
PQ kPR
^
1 1
1
1
Therefore, cannot take value of 1 and 0.
i.e., 0,1.
3.Sol: We have
2.Sol:
3.Sol:
4.Sol:
det ( ) det (^1 ) (det )(det )^1
det
R PQP P Q
P
det( )Q
i.e., det ( ) 48 4R x^2
Consider option (a), we have x 1. That is,
det( ) 44 0R
Therefore the equation
0
0
0
R
will have trival solution. i.e., 0.
now consider option (b), in which we have
given, PQ QP
i.e., PQP QI Q^1
^ R Q
No value of x satisfies this condition
likewise consider option (c), we have given
2
det 0 4 0 8
5
x x
x x
(40 4 ) 8 x^2
48 4 x^2
det ( ),R x R
So option (c) is correct.
2 1 2/3
0 4 4/3
0 0 6
R
and finally consider option
(d), we have
1
(R I a6 ) 0
b
i.e.,
2
4 0
3
b
a
4
2 0
3
b
a
a 2 and b 3
^ a b 5
So option (d) is correct
finally consider option (d) which is.
4.Sol: rewrite the given function as
0
0
2 3
cos cos
2 2
( )
2 2
1 cos
2
n
k
n
k
k
n n
f n
k
n
0
0
2 3
( 1)cos
2 2
( )
( 1) cos 2 2
2
n
k
n
k
k
n
n n
f n
n k
n
sin ( 1)
( 1)cos^2 cos^3
(^2) sin 2
( )^2
sin ( 1)
( 1)^2 cos 2( 2)
sin 2( 2)
2
n
n n n
n n
f n n
n
n n n
n
n
i.e.,
( 1)cos cos
( )^22
( 1) 1
n
f n n n
n
( ) cos
2
f x
n
now consider option (a), we have
sin 7cos cos^1 sin 0
7