maximum value is
9
2
when x 2.
7.Sol: Method 1:
x xy y x xy y x xy y^2 ^23 ^22 2 2^22
2
3.3 2x y 9
The maximum value is 9, and this can be
attained when x y 0.
(^22) (^22)
1
3
x xy y x xy y
^22
2
2
3
x xy y
1 2 2
.3 1
3 3
x y
The minimum value of x xy y^2 ^2 is 1 when
x y 1.
The answer is 1 9 10 .
Method 2:
Let x xy y k^2 ^2 (1)
x xy y^2 ^23 (2)
^22
3
2 1 :
2
k
x y
(3)
2 1 :2 3 xy k (4)
2 3
3 4 : 3
2
k
x y k
9
0 9
2
k
k
(5)
2 3
3 4 : 3
2
k
x y k
3 3
0 1
2
k
k
(6)
The maximum value is 9, and the minimum
value is 1.
The answer is 1 9 10 .
8.Sol:Since,
2 6x x y x x y^2 ^2 0,2 (^3) ^20
Solve for x: 0 x 3.
x y x x x y x x^2 ^2 2 2 6^22 ^28
(^) 0 x 4 16^2.
Since 0 x 3 ,the greatest value for x is 3.
Therefore, the greatest value of x y x^2 ^22 is
16 1 15 when x 3.
9.Sol: Method 1
Suppose that k x y 3 4 is a possible value.
Substituting yk x^3 4 into
x y x y^2 ^2 14 6 6, we get
2 2
16 x k x x k x 3 224 24 3 96,
which simplifies to
25 2 3 76x k x k k^2 ^2 24 96 0 (1)
if the line 3 4x y k intersects the given
circle, the discriminant of (1) must be
nonnegative.
Thus we get
(^22)
3 76 25k k k24 96 0, which
simplifies to k k (^73) 7 0.
Hence 7 k 73.
The largest possible Value can have is 73 when
47
5
y and
47
5
y.
10.Sol: The domain is
4 13 0x
13
4
x
Let 4 13 , 0x t t .
Then
1 7
4 13 4 13
2 2
y x x
1 2 7 1 2
1 3
2 2 2
t t t
Since
7.Sol: Method 1:
8.Sol:
9.Sol: Method 1
10.Sol:
1 2 1
0, 1
2 2
t t .
1 7
3
2 2
y
. The range of y x x 2 3 4 13is
y R ,
7
2
y.