Science - USA (2019-01-18)

(Antfer) #1

Recently, we conducted a summit with key
opinion leaders to assess the state of field and
to identify areas of research in synthetic methods
that would have critical impact in the pharma-
ceutical industry. Key unsolved problems in syn-
thetic chemistry included selective saturation
and functionalization of heteroaromatics, concise
synthesis of highly functionalized, constrained
bicyclic amines, and C-H functionalization for the
synthesis ofa,a,a-trisubstituted amines. Other
areas, such as selective functionalization of bio-
molecules and synthesis of noncanonical nucleo-
sides, were identified as emerging areas of high
potential impact. We envision that partnerships
between the pharmaceutical industry and lead-
ing academic groups in the field hold great
promise to spur the invention of disruptive syn-
thetic chemistry to address these areas.
The most intriguing idea to emerge from the
discussion was the concept of molecular editing,
which would entail insertion, deletion, or ex-
change of atoms in highly functionalized com-
pounds at will and in a highly specific fashion.
Many innovations discussed above possess ele-
ments of this aspirational goal; however, a truly
general method of this type would substantially
changethepaceofdrugdiscoveryandreduce
constraints on compound design. Figure 7 pro-
spectively illustrates how analogs of a complex
lead scaffold might be accessed via site selective
C-H functionalization, heteroaromatic reduction,
ring expansion, or ring contraction. The power to
modify this scaffold directly and specifically not
only avoids a potentially lengthy synthesis of
analogs, but also removes any limitation of
molecular design imposed by synthetic hurdles.
We anticipate that breakthroughs in the area of
molecular editing will improve the pace and quality
of molecule invention, enabling the introduction
of new and important medicines at a faster rate.


Outlook


Synthetic chemistry has historically been a power-
ful force in the discovery of new medicines and is
now poised to have an even greater impact to
accelerate the pace of drug discovery and expand
the reach of synthetic chemistry beyond the tra-
ditional boundaries of small-molecule synthesis.
New methods of synthesis can greatly expand
the rate of molecule generation while also provid-
ing opportunities to routinely synthesize complex
molecules in the course of drug discovery. Manip-
ulation of biomolecules either as catalytic reagents
(i.e., engineered enzymes) or as substrates for site-
specific modulation is becoming more accessible
and creating new opportunities for producing novel
therapeutic entities. Academic research continues
to be an important venue for producing novel
reactivity, and rapid application of new methods
has the potential to further drive molecule inven-
tion in drug discovery. New technologies such as
HTE, automation, and new analytical methods
are accelerating the discovery of new reaction
methods. Further, integration of computational
reaction modeling with the vast quantities of
experimental data generated by nanoscale HTE
has the potential to build more informative mod-


els that can predict successful reaction condi-
tions or even discover new reactions. The field of
predictive chemical synthesis remains nascent,
but opportunities to build prognostic algorithms
via machine-learning processes are likely to ex-
pand in the coming years. Continued investment
in synthetic chemistry and chemical technologies
has the promise to advance the field closer to a
state where exploration of chemical space is
unconstrained by synthetic complexity and is
only limited by the imagination of the chemist.
Advancements in synthetic chemistry are certain
to remain highly relevant to the mission of in-
venting new medicines to improve the lives of
patients worldwide.

REFERENCES AND NOTES


  1. P. Ball, Chemistry: Why synthesize?Nature 528 , 327– 329
    (2015). doi:10.1038/528327a; pmid: 26672538

  2. G. M. Whitesides, Reinventing chemistry.Angew. Chem. Int. Ed.
    54 , 3196–3209 (2015). doi:10.1002/anie.201410884;
    pmid: 25682927

  3. T. Laird, Is there a Future for Organic Chemists in the
    Pharmaceutical Industry outside China and India?Org. Process
    Res. Dev. 14 , 749 (2010). doi:10.1021/op1001676

  4. D. C. Blakemoreet al., Organic synthesis provides opportunities
    to transform drug discovery.Nat. Chem. 10 ,383–394 (2018).
    doi:10.1038/s41557-018-0021-z;pmid: 29568051

  5. C. J. Gerry, S. L. Schreiber, Chemical probes and drug leads
    from advances in synthetic planning and methodology.
    Nat. Rev. Drug Discov. 17 , 333–352 (2018). doi: doi:10.1038/
    nrd.2018.53; pmid: 29651105

  6. J. L. Reymond, L. Ruddigkeit, L. Blum, R. van Deursen, The
    Enumeration of Chemical Space.Wiley Interdiscip. Rev.
    Comput. Mol. Sci. 2 , 717–733 (2012). doi:10.1002/wcms.1104

  7. D. G. Brown, J. Boström, Analysis of Past and Present
    Synthetic Methodologies on Medicinal Chemistry: Where
    Have All the New Reactions Gone?J. Med. Chem. 59 ,
    4443 – 4458 (2016). doi:10.1021/acs.jmedchem.5b01409;
    pmid: 26571338

  8. L. D. Cama, B. G. Christensen, Total synthesis ofb-lactam
    antibiotics IX (±)-1-oxabisnorpenicillin G.Tetrahedron Lett. 19 ,
    4233 – 4236 (1978). doi:10.1016/S0040-4039(01)95189-5

  9. J. C. Sheehan, K. R. Henery-Logan, The Total Synthesis
    of Penicillin V.J. Am. Chem. Soc. 79 , 1262–1263 (1957).
    doi:10.1021/ja01562a063

  10. T. N. Salzmann, R. W. Ratcliffe, B. G. Christensen,
    F. A. Bouffard, A Stereocontrolled Synthesis of
    (+)-Theinamycin.J. Am. Chem. Soc. 102 , 6161–6163 (1980).
    doi: 10 .1021/ja00539a040

  11. J. L. Horsley-Silva, H. E. Vargas, New Therapies for Hepatitis C
    Virus Infection.Gastroenterol. Hepatol. 13 ,22–31 (2017).
    pmid: 28420944

  12. J. L. Kimet al., Crystal structure of the hepatitis C virus
    NS3 protease domain complexed with a synthetic NS4A
    cofactor peptide.Cell 87 , 343–355 (1996). doi:10.1016/
    S0092-8674(00)81351-3; pmid: 8861917

  13. A. H. Hoveyda, A. R. Zhugralin, The remarkable metal-
    catalysed olefin metathesis reaction.Nature 450 , 243– 251
    (2007). doi:10.1038/nature06351; pmid: 17994091

  14. Å. Rosenquistet al., Discovery and development of simeprevir
    (TMC435), a HCV NS3/4A protease inhibitor.J. Med. Chem.
    57 , 1673–1693 (2014). doi:10.1021/jm401507s;
    pmid: 24446688

  15. D. Niu, D. Liu, J. D. Moore, G. Xu, Y. Sun, Y. Gai, D. Tang,
    Y. S. Or, Z. Wang, US20090005387A1 (2009).

  16. J. A. McCauleyet al., Discovery of vaniprevir (MK-7009),
    a macrocyclic hepatitis C virus NS3/4a protease inhibitor.
    J. Med. Chem. 53 , 2443–2463 (2010). doi:10.1021/jm9015526;
    pmid: 20163176

  17. S. Harperet al., Discovery of MK-5172, a Macrocyclic
    Hepatitis C Virus NS3/4a Protease Inhibitor.ACS Med.
    Chem. Lett. 3 ,332–336 (2012). doi:10.1021/ml300017p;
    pmid: 24900473

  18. K. Bjornsonet al., Preparation of N-(3-alkyl- and 3-
    carbocyclyl)prolyl-1-aminocyclopropanecarboxylic acid
    peptides as inhibitors of hepatitis C virus. WO2014/008285
    (2014).
    19. Y.S.Oret al., Preparation of macrocycles, especially
    proline-containing cyclic peptides, as hepatitis C virus
    (HCV) NS3-NS4A protease inhibitors, WO2012/040167
    (2012).
    20. P. Ruiz-Castillo, S. L. Buchwald, Applications of Palladium-
    Catalyzed C-N Cross-Coupling Reactions.Chem. Rev. 116 ,
    12564 – 12649 (2016). doi:10.1021/acs.chemrev.6b00512;
    pmid: 27689804
    21. E. Vitaku, D. T. Smith, J. T. Njardarson, Analysis of the
    structural diversity, substitution patterns, and frequency of
    nitrogen heterocycles among U.S. FDA approved
    pharmaceuticals.J.Med. Chem. 57 , 10257–10274 (2014).
    doi:10.1021/jm501100b; pmid: 25255204
    22. R. Gianatassioet al., Strain-release amination.Science 351 ,
    241 – 246 (2016). doi:10.1126/science.aad6252;
    pmid: 26816372
    23. T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska,
    The medicinal chemist’s toolbox for late stage functionalization
    of drug-like molecules.Chem.Soc.Rev. 45 ,546–576 (2016).
    doi:10.1039/C5CS00628G;pmid:26507237
    24. M. G. Campbell, T. Ritter, Late-Stage Fluorination: From
    Fundamentals to Application.Org. Process Res. Dev. 18 ,
    474 – 480 (2014). doi:10.1021/op400349g; pmid: 25838756
    25. K. Yamamotoet al., Palladium-catalysed electrophilic aromatic
    C-H fluorination.Nature 554 , 511–514 (2018). doi:10.1038/
    nature25749; pmid: 29469096
    26. C. A. Kuttruff, M. Haile, J. Kraml, C. S. Tautermann, Late-Stage
    Functionalization of Drug-Like Molecules Using Diversinates.
    ChemMedChem 13 , 983–987 (2018). doi:10.1002/
    cmdc.201800151; pmid: 29534329
    27. J. W. Beattyet al., Photochemical Perfluoroalkylation with
    PyridineN-Oxides: Mechanistic Insights and Performance on a
    Kilogram Scale.Chem 1 , 456–472 (2016). doi:10.1016/
    j.chempr.2016.08.002; pmid: 28462396
    28. M. A. Miranda, M. L. Marin, Photocatalytic Functionalization
    for the Synthesis of Drugs and Analogs.Curr. Opin. Green Sustain.
    Chem. 6 ,139–149 (2017). doi:10.1016/j.cogsc.2017.05.001
    29. D. A. Diroccoet al., Late-stage functionalization of biologically
    active heterocycles through photoredox catalysis.Angew.
    Chem. 126 , 4902 – 4906 (2014). doi:10.1002/ange.201402023;
    pmid: 24677697
    30. S. D. Halperinet al., Development of a Direct Photocatalytic
    C-H Fluorination for the Preparative Synthesis of Odanacatib.
    Org. Lett. 17 , 5200–5203 (2015). doi:10.1021/acs.
    orglett.5b02532; pmid: 26484983
    31. Z. Wang, A. G. Herraiz, A. M. Del Hoyo, M. G. Suero, Generating
    carbyne equivalents with photoredox catalysis.Nature 554 ,
    86 – 91 (2018). doi:10.1038/nature25185; pmid: 29388953
    32. J. Twiltonet al., The merger of transition metal and
    photocatalysis.Nat. Rev. Chem. 1 , 0052 (2017). doi:10.1038/
    nature25185; pmid: 29388953
    33. C. R. J. Stephenson, T. P. Yoon, D. W. C. Macmillan,
    Visible Light Photocatalysis in Organic Chemistry
    (Wiley-VCH, 2018).
    34. A. Noble, S. J. McCarver, D. W. C. MacMillan, Merging photoredox
    and nickel catalysis: Decarboxylative cross-coupling of
    carboxylic acids with vinyl halides.J. Am. Chem. Soc. 137 ,
    624 – 627 (2015). doi:10.1021/ja511913h; pmid: 25521443
    35. J. A. Terrett, J. D. Cuthbertson, V. W. Shurtleff,
    D. W. C. MacMillan, Switching on elusive organometallic
    mechanisms with photoredox catalysis.Nature 524 , 330– 334
    (2015). doi:10.1038/nature14875; pmid: 26266976
    36. E. B. Corcoranet al., Aryl amination using ligand-free Ni(II)
    salts and photoredox catalysis.Science 353 , 279–283 (2016).
    doi:10.1126/science.aag0209; pmid: 27338703
    37. C. P. Johnston, R. T. Smith, S. Allmendinger, D. W. C. MacMillan,
    Metallaphotoredox-catalysed sp3-sp3 cross-coupling of
    carboxylic acids with alkyl halides.Nature 536 ,322–325 (2016).
    doi:10.1038/nature19056;pmid: 27535536
    38. Y. Li, P. C. Cirino, Recent advances in engineering proteins for
    biocatalysis.Biotechnol. Bioeng. 111 , 1273– 1287 (2014).
    doi:10.1002/bit.25240; pmid: 24802032
    39. C. K. Savileet al., Biocatalytic asymmetric synthesis of chiral
    amines from ketones applied to sitagliptin manufacture.
    Science 329 , 305–309 (2010). doi:10.1126/science.1188934;
    pmid: 20558668
    40.M.D.Truppo,BiocatalysisinthePharmaceuticalIndustry:
    The Need for Speed.ACS Med. Chem. Lett. 8 ,476– 480
    (2017). doi:10.1021/acsmedchemlett.7b00114;
    pmid: 28523096
    41. K. W. Knouseet al., Unlocking P(V): Reagents for chiral
    phosphorothioate synthesis.Science 361 , 1234–1238 (2018).
    doi:10.1126/science.aau3369


Camposet al.,Science 363 , eaat0805 (2019) 18 January 2019 7of8


RESEARCH | REVIEW


on January 19, 2019^

http://science.sciencemag.org/

Downloaded from
Free download pdf