Science - USA (2019-01-18)

(Antfer) #1

  1. M. D. Altmanet al., Cyclic Di-Nucleotide Compounds as STING
    Agonists, WO2017/027646A1 (2017).

  2. F. H. Arnold, Directed Evolution: Bringing New Chemistry to
    Life.Angew. Chem. Int. Ed. 57 ,4143–4148 (2018).
    doi:10.1002/anie.201708408; pmid: 29064156

  3. S. P. France, L. J. Hepworth, N. J. Turner, S. L. Flitsch,
    Constructing Biocatalytic Cascades: In Vitro and in Vivo
    Approaches to de Novo Multi-Enzyme Pathways.ACS Catal. 7 ,
    710 – 724 (2017). doi:10.1021/acscatal.6b02979

  4. E. M. Sletten, C. R. Bertozzi, Bioorthogonal chemistry: Fishing
    for selectivity in a sea of functionality.Angew. Chem. Int. Ed.
    48 , 6974–6998 (2009). doi:10.1002/anie.200900942;
    pmid: 19714693

  5. P. Stropet al., Location matters: Site of conjugation modulates
    stability and pharmacokinetics of antibody drug conjugates.
    Chem. Biol. 20 , 161–167 (2013). doi:10.1016/
    j.chembiol.2013.01.010; pmid: 23438745

  6. J. I. MacDonald, H. K. Munch, T. Moore, M. B. Francis, One-step
    site-specific modification of native proteins with 2-
    pyridinecarboxyaldehydes.Nat. Chem. Biol. 11 , 326– 331
    (2015). doi:10.1038/nchembio.1792; pmid: 25822913

  7. S. Bloomet al., Decarboxylative alkylation for site-selective
    bioconjugation of native proteins via oxidation potentials.
    Nat. Chem. 10 , 205–211 (2018). doi:10.1038/nchem.2888;
    pmid: 29359756

  8. N. Oka, M. Yamamoto, T. Sato, T. Wada, Solid-phase synthesis
    of stereoregular oligodeoxyribonucleoside phosphorothioates
    using bicyclic oxazaphospholidine derivatives as monomer
    units.J. Am. Chem. Soc. 130 , 16031–16037 (2008).
    doi:10.1021/ja805780u; pmid: 18980312

  9. N. Iwamotoet al., Control of phosphorothioate stereochemistry
    substantially increases the efficacy of antisense
    oligonucleotides.Nat. Biotechnol. 35 , 845–851 (2017).
    doi:10.1038/nbt.3948; pmid: 28829437

  10. C. Heinis, T. Rutherford, S. Freund, G. Winter, Phage-encoded
    combinatorialchemical libraries based on bicyclic peptides.
    Nat. Chem. Biol. 5 , 502–507 (2009). doi:10.1038/
    nchembio.184; pmid: 19483697

  11. C. J. Hipolito, H. Suga, Ribosomal production and in vitro
    selection of natural product-like peptidomimetics: The FIT and
    RaPID systems.Curr. Opin. Chem. Biol. 16 , 196–203 (2012).
    doi:10.1016/j.cbpa.2012.02.014; pmid: 22401851

  12. M. Shevlin, Practical High-Throughput Experimentation for
    Chemists.ACS Med. Chem. Lett. 8 , 601–607 (2017).
    doi:10.1021/acsmedchemlett.7b00165; pmid: 28626518

  13. K. D. Collins, T. Gensch, F. Glorius, Contemporary screening
    approaches to reaction discovery and development.
    Nat. Chem. 6 , 859–871 (2014). doi:10.1038/nchem.2062;
    pmid: 25242480

  14. C. K. Chunget al., Asymmetric Hydrogen Bonding Catalysis for
    the Synthesis of Dihydroquinazoline-Containing Antiviral,


Letermovir.J. Am. Chem. Soc. 139 , 10637–10640 (2017).
doi:10.1021/jacs.7b05806; pmid: 28737937


  1. H. Liet al., Enantioselective Synthesis of Hemiaminals via
    Pd-Catalyzed C-N Coupling with Chiral Bisphosphine Mono-
    oxides.J. Am. Chem. Soc. 137 , 13728–13731 (2015).
    doi:10.1021/jacs.5b05934; pmid: 26414910

  2. S. W. Krska, D. A. DiRocco, S. D. Dreher, M. Shevlin, The
    Evolution of Chemical High-Throughput Experimentation To
    Address Challenging Problems in Pharmaceutical Synthesis.
    Acc. Chem. Res. 50 , 2976–2985 (2017). doi:10.1021/acs.
    accounts.7b00428; pmid: 29172435

  3. T. Cernaket al., Microscale High-Throughput Experimentation
    as an Enabling Technology in Drug Discovery: Application in
    the Discovery of (Piperidinyl)pyridinyl-1H-benzimidazole
    Diacylglycerol Acyltransferase 1 Inhibitors.J. Med. Chem. 60 ,
    3594 – 3605 (2017). doi:10.1021/acs.jmedchem.6b01543;
    pmid: 28252959

  4. P. S. Kutchukianet al., Chemistry informer libraries:
    Achemoinformatics enabled approach to evaluate and
    advance synthetic methods.Chem. Sci. 7 , 2604–2613 (2016).
    doi:10.1039/C5SC04751J; pmid: 28660032

  5. K. D. Collins, F. Glorius, A robustness screen for the rapid
    assessment of chemical reactions.Nat. Chem. 5 , 597– 601
    (2013). doi:10.1038/nchem.1669; pmid: 23787750

  6. J. Richardson, J. C. Ruble, E. A. Love, S. Berritt, A Method
    for Identifying and Developing Functional Group Tolerant Catalytic
    Reactions: Application to the Buchwald-Hartwig Amination.
    J. Org. Chem. 82 , 3741–3750 (2017). doi:10.1021/acs.
    joc.7b00201; pmid: 28245358

  7. A. Buitrago Santanillaet al., Nanomole-scale high-throughput
    chemistry for the synthesis of complex molecules.
    Science 347 ,49–53 (2015). doi:10.1126/science.1259203;
    pmid: 25554781

  8. D. Pereraet al., A platform for automated nanomole-scale
    reaction screening and micromole-scale synthesis in flow.
    Science 359 , 429–434 (2018). doi:10.1126/science.aap9112;
    pmid: 29371464

  9. S. Linet al., Mapping the dark space of chemical reactions
    with extended nanomole synthesis and MALDI-TOF MS.
    Science 361 , eaar6236 (2018). doi:10.1126/science.aar6236;
    pmid: 29794218

  10. N. J. Gesmundoet al., Nanoscale synthesis and affinity
    ranking.Nature 557 , 228–232 (2018). doi:10.1038/
    s41586-018-0056-8; pmid: 29686415

  11. M. Orlandi, F. D. Toste, M. S. Sigman, Multidimensional
    Correlations in Asymmetric Catalysis through Parameterization
    of Uncatalyzed Transition States.Angew. Chem. Int. Ed. 56 ,
    14080 – 14084 (2017). doi:10.1002/anie.201707644;
    pmid: 28902441

  12. D. T. Ahneman, J. G. Estrada, S. Lin, S. D. Dreher, A. G. Doyle,
    Predicting reaction performance in C-N cross-coupling using


machine learning.Science 360 , 186 – 190 (2018). doi:10.1126/
science.aar5169; pmid: 29449509


  1. J. M. Granda, L. Donina, V. Dragone, D.-L. Long, L. Cronin,
    Controlling an organic synthesis robot with machine learning to
    search for new reactivity.Nature 559 , 377–381 (2018).
    doi:10.1038/s41586-018-0307-8; pmid: 30022133

  2. R. N. Straker, Q. Peng, A. Mekareeya, R. S. Paton,
    E. A. Anderson, Computational ligand design in enantio- and
    diastereoselective ynamide [5+2] cycloisomerization.
    Nat. Commun. 7 , 10109 (2016). doi:10.1038/ncomms10109;
    pmid: 26728968

  3. D. A. DiRoccoet al., A multifunctional catalyst that
    stereoselectively assembles prodrugs.Science 356 , 426– 430
    (2017). doi:10.1126/science.aam7936; pmid: 28450641

  4. Y. Guan, S. E. Wheeler, Automated Quantum Mechanical
    Predictions of Enantioselectivity in a Rhodium-Catalyzed
    Asymmetric Hydrogenation.Angew. Chem. Int. Ed. 56 ,
    9101 – 9105 (2017). doi:10.1002/anie.201704663;
    pmid: 28586140

  5. B. Liuet al., Retrosynthetic Reaction Prediction Using
    Neural Sequence-to-Sequence Models.ACS Cent. Sci. 3 ,
    1103 – 1113 (2017). doi:10.1021/acscentsci.7b00303;
    pmid: 29104927

  6. C. W. Coley, L. Rogers, W. H. Green, K. F. Jensen, Computer-
    Assisted Retrosynthesis Based on Molecular Similarity.
    ACS Cent. Sci. 3 , 1237–1245 (2017). doi:10.1021/
    acscentsci.7b00355; pmid: 29296663

  7. M. H. S. Segler, M. Preuss, M. P. Waller, Planning chemical
    syntheses with deep neural networks and symbolic AI.
    Nature 555 , 604–610 (2018). doi:10.1038/nature25978;
    pmid: 29595767

  8. C. W. Coley, R. Barzilay, T. S. Jaakkola, W. H. Green,
    K. F. Jensen, Prediction of Organic Reaction Outcomes Using
    Machine Learning.ACS Cent. Sci. 3 , 434–443 (2017).
    doi:10.1021/acscentsci.7b00064; pmid: 28573205
    76.D. T. Ahneman, J. G. Estrada, S. Lin, S. D. Dreher, A. G. Doyle,
    Predicting reaction performance in C-N cross-coupling using
    machine learning.Science 360 , 186–190 (2018). doi:10.1126/
    science.aar5169; pmid: 29449509


ACKNOWLEDGMENTS
We thank M. Kress, J. Hale, L.-C. Campeau, D. Schultz, S. Krska,
D. DiRocco, and A. Walji for their critical review of the manuscript;
C. T. Liu for preparation of Fig. 1; and D. MacMillan, R. Sarpong,
M. Gaunt, F. Arnold, and G. Dong for their participation in the
Disruptive Chemistry Summit at Merck. The authors declare no
competing financial interests.

10.1126/science.aat0805

Camposet al.,Science 363 , eaat0805 (2019) 18 January 2019 8of8


RESEARCH | REVIEW


on January 19, 2019^

http://science.sciencemag.org/

Downloaded from
Free download pdf