2019-03-01_Physics_Times

(singke) #1
So momentum of two pieces after explosion

( cos )
2 2

m m
  v  V

By the law of conservation of momentum

cos cos 3 cos.
2 2

m m
mv  v V V v 


   

2

2

p
E
m

 ( Linear momentum is conserved )

1 2
2 1

1 E m
E
m E m

   .

As momentum is conserved the momentum of
both the particles are equal to P.
Energy of explosion  K E K E. 1. 2
2 2 2
1 2
1 2 1 2

( )
2 2 2

P P P m m
m m mm


  

The velocity of the canon at the heightest point
is vcos . Let m is the mass of the canon.
P Pi f

vcos (0) v'
2 2

m m
m  

v 2vcos' 
The y position of CM must be zero.

y = -5m

Let

3
15
4 4
cm^0

m m
y
y
m

 
  
   

2
0 0

1
2

E KE mv 

Where v 0 is the velocity of one of three fragments
From conservation of LM

0 0 0
0    mv m v i v j v k ˆ ˆ ˆ
 


8.Sol:


9.Sol:


10.Sol:


11.Sol:

12.Sol:

v v (^30)
The energy of explosion is
 
(^22)
0 0
1 1
3 3
2 2
KE m v mv    
 
2
0
1
6
E mv  6 E 0

Free download pdf