12.1.I'<incipalCl)m..."n~ntAnal}'s;, 569
.,':----;!---;-"
_.S 0 3
."., '~'" ~.•••._',
" ..,-. .'..'~.•~''''
':r-'---~+·_..-:--'~-J
~,
.,
."
Acomparison 01 pro:ipalcompo-
Mntanalysis.... 111 Fisha(slinaar
discriminant 101 """",<*man""'"
alityr&duclion. Heretoodatain
twodimansions,belongingtotwo
classessIIOWI1inredandblue.is
tobePfOI"Cled ontoas.ingledi·
mension. PCAc/>xlsasthedirec·
tion 01 maximumvaria""e.sIIOWI1
trythama9""taCo""'.wt11chleads
tostrongclassoverlap. whereas
!heFisl>efIiMardiSCfOrnillanttakes
accoun1 <:A tooclasslabels and
leadsto aprojectionontotheg<ean
CUM! giving much t>etler class
separation
Fig"",12.7
Fig"",12.8 Visualilatlon 01 !heoill'low<latalIetobtained
tryprojoectingthe<lataontothelirsttwoprin.
cipalcompone<1ts.The<ed,blue,and9r&en
pointscorre-spondto!he'IamiNI(,'t>omo-
genoous',and'8nnula~flowoonligurations
",specriveIy.
12.1.4 peAforhigh-dimensionaldata
Insomeapplication.ofpliTlCipalcomponentanalysis.thenumberofdatapoints
is smallerthant!>cdimensionalityoftroedata'pace.FOI"example.",emightwantto
applyPeAtoadata<elofa fewhundredimages,eachof,,'hichrorrespoOOstoa
"eetorina'paceofpoIentially.....mlmilliondimensiOlls(COITespondingtnthfl'e
enlour"aluesforeachofthepi.",lsintroeimage),NOIethatina D-<limen,ionalspace
a setofjYpoints.",'hereN <D.definesa linearsubspa::e",hosedimensi"nality
isat ""'stN - 1,andSOthereislinlepointinapplyingPeAfor,'alue<ofM
thaI"'"greaterthanN - I, Indeed,if"'epelf"",,PeAwewillfindthatatleast
D- N+Ioftheeigen".luesartlero.eorrespnndingtQeigenvectorsaloog",hose
direclioosthedata<elhas10mvarianee.Funhem>ore.typicalalgOl"ithm,forfinding
theeigen,'eet""ofaDxDmatrixha"ea computatiooaleoslthmscaleslikeO(D~J.
aOOsoforappliealionssuchastheimagee,ample.adirec'applicationofPeAwill
becomputatiooallyinfe,,-sibJe.
W.canresoh'ethisproblemasfoIl",",'" Fir;l.letusdefineXtobethe(N"DJ·