570 12.CONTINUOUSLATENTVARIABLES
dimensionalcentreddatamatrix,whosenthrowis givenby(xn- X)T.Thecovari-ancematrix(12.3)canthenbewrittenasS= N-^1 XTX,andthecorresponding
eigenvectorequationbecomes1 T
-XN XUi= AiUi.Nowpre-multiplybothsidesbyXtogive
1 T
NXX (XUi)= Ai(XUi)'IfwenowdefineVi=XUi,weobtain
1 T
-XXVi=AiVi
N(12.26)
(12.27)
(12.28)
(12.30)
whichis aneigenvectorequationfortheN xNmatrixN-^1 XXT.Weseethatthis
hasthesameN-1eigenvaluesastheoriginalcovariancematrix(whichitselfhasan
additionalD- N+1 eigenvaluesofvaluezero).Thuswecansolvetheeigenvector
probleminspacesoflowerdimensionalitywithcomputationalcostO(N^3 )instead
ofO(D^3 ).Inordertodeterminetheeigenvectors,wemultiplybothsidesof(12.28)
byXTtogive(
NX^1 T)X (XTVi)= Ai(XTVi) (12.29)fromwhichweseethat(XTVi)isaneigenvectorofS witheigenvalueAi. Note,
however,thattheseeigenvectorsneednotbenormalized.Todeterminetheappropri-atenormalization,were-scaleUiex:XTVibya constantsuch thatIluiII=1,which,
assumingVihasbeennormalizedtounitlength,gives1 T
Ui= (NAi)1/2X Vi·Insummary,toapplythisapproachwefirstevaluateXXTandthenfinditseigen-
vectorsandeigenvaluesandthencomputetheeigenvectorsintheoriginaldataspace
using(12.30).12.2. ProbabilisticpeA
TheformulationofPCAdiscussedintheprevioussectionwasbasedona linear
projectionofthedataontoa subspaceoflowerdimensionalitythantheoriginaldata
space. WenowshowthatPCAcanalsobeexpressedasthemaximumlikelihood
solutionofa probabilisticlatentvariablemodel.ThisreformulationofPCA,known
asprobabilisticpeA,bringsseveraladvantagescomparedwithconventionalPCA:- ProbabilisticPCArepresentsa constrainedformoftheGaussiandistribution
inwhichthenumberoffreeparameterscanberestrictedwhilestillallowing
themodeltocapturethedominantcorrelationsina dataset.