572 11.CONTINUOUSLAT!::NTVANIM1LI::S
,
/
,.-
,,
,,
,,
,
Flgu..12.9 I\n~I"'tfat""oIlt>eII"""fativevi&woI1t>ep
spaceandaon&-<lirnent.ionallat/l<1tspace, AnOb&erved<!alapointxIsgeneratedbyfirstdrawinga valuei
fof1t>eIat&n1vafiatlle/f(lm~spriordist,~t""P(~)andItlendrawinga val""fofx lromaniSO/fopK:Gaussian
distr~t""(iijust,al&(lbytheredcir<:ie's)havingmeanwi+"andcoY8r1.once,,'1 Thel/f&er\ellips.&$showl!le
density"""toors!ofthemarg'''''1dis1r1bulionPIx).
lossofge""raJityinassumingazeromean.unitco\'arianceGau"ianforthelatent
distributi"nII{Z)becausea moregcneralGau"i3ndi"ributi"nwouldgi"erisetoan
equivalentprobabili"icn>odel.
WecanviewtheprobabilisticPeAmodelfroma geoerati"e\'iew""intin"hich
a sampled'-alueoftheob""Yed,..riable isobIainedbyfirstchoo,inga ,..Iuefor
thelatent,'ariahleaodthen>amplingtheOO",,,'e;j,-ariablecooditionedonthislao
tent\'alue, Specifically,theV-dimen'ionalOO"''''ed'-ariablex is definedbya lin·
ea,tran,formati,,"ofthe'\/·dimen,i"nallatcnt'-ariablez plu,additi'-eGaussian
'noise',<0that
,,=\VZ+,,+~ (12.33)
w!>erez isan M-di""'nsionalGaussianlalentvariable.and..isa V·dimensi"nal
,ero-meanGau..ian-distributednoi..,"ariablewitbco'-ariance,,21.Thisgenerative
processis illustratedinFigure12.9.NOIethatthisframe".-orl<isbasedona mapping
fromlatent,pace 10 dataspace.incontrast 10 thenl()l'(:C(""'cnti,,,,"1"iew"fI'CA
dis.cus"'dalx",e,11Ie",,'e=mapping,fromdataspacetothelatentspace.,,-illhe
OOlained,honlyusingHaycs·lhwn:m.
SUf!ll'OSCwewish 10 deten"inethe"aluesofll>oparameters\V.I'and,,'uSIng
maximumlikelihuo<l,Towrite""""nlhelikeliltoodfunction,weneedan""pression
fortl>omarginaldistributioop{")oftl>o~,,'ed...riahle_Thisisexprt__sed.fmn'
thesumaodp,oductrules"fprobability,intheform
(11,34)
E,e,,-ise 12,7
ll""auS(:thiscorrespondstoalinear·Gau"i,nlT1(llIcLthi<marginaldi,tribulionis
againGaussian.atldis givenby