Pattern Recognition and Machine Learning

(Jeff_L) #1
12.2.ProbabilisticpeA

wheretheDxDcovariancematrixCis definedby
C=WWT+0-^2 1.

573

(12.36)

Thisresultcanalsobederivedmoredirectlybynotingthatthepredictivedistribution
willbeGaussianandthenevaluatingitsmeanandcovarianceusing(12.33). This
gives
IE[x]
cov[x]

IE[Wz+JL+E]= JL
IE[(Wz+E)(WZ+E)T]
IE[WZZTWT]+IE[EET]= WWT+0-^21

(12.37)

(12.38)

wherewehaveusedthefactthatz andEareindependentrandomvariablesandhence
areuncorrelated.
Intuitively,wecanthinkofthedistributionp(x)asbeingdefinedbytakingan
isotropicGaussian'spraycan'andmoving itacrosstheprincipalsubspacespraying
Gaussianinkwithdensitydeterminedby0-^2 andweightedbythepriordistribution.
Theaccumulatedinkdensitygivesrisetoa 'pancake'shapeddistributionrepresent-
ingthemarginaldensityp(x).
Thepredictivedistributionp(x)isgovernedbytheparametersJL,W,and0-^2 •
However,thereis redundancyinthisparameterizationcorrespondingtorotationsof

thelatentspacecoordinates.Toseethis,considera matrixW = WRwhereRis


anorthogonalmatrix. UsingtheorthogonalitypropertyRRT =I,weseethatthe


quantityWWTthatappearsinthecovariancematrixCtakestheform


(12.39)

(12.41)

Exercise 12.8


andhenceisindependentofR.Thusthereisa wholefamilyofmatricesWallof
whichgiverisetothesamepredictivedistribution.Thisinvariancecanbeunderstood
intermsofrotationswithinthelatentspace.Weshallreturntoa discussionofthe
numberofindependentparametersinthismodellater.

Whenweevaluatethepredictivedistribution,werequireC-^1 ,whichinvolves


theinversionofaDxDmatrix.Thecomputationrequiredtodothiscanbereduced
bymakinguseofthematrixinversionidentity(C.7)togive

C-^1 =0--^1 1 - 0--2WM-^1 WT (12.40)


wheretheM x MmatrixMis definedby
M =WTW+0-^2 1.

BecauseweinvertMratherthaninvertingCdirectly,thecostofevaluatingC-^1 is


reducedfromO(D^3 )toO(M^3 ).


Aswellasthepredictivedistributionp(x),wewillalsorequiretheposterior
distributionp(zlx),whichcanagainbewrittendowndirectlyusingtheresult(2.116)
forlinear-Gaussianmodelstogive
(12.42)
Notethattheposteriormeandependsonx,whereas theposteriorcovarianceisin-
dependentofx.
Free download pdf