Pattern Recognition and Machine Learning

(Jeff_L) #1
576 12.CONTINUOUSLATENTVARIABLES

Therotationalinvarianceinlatentspacerepresentsa formofstatisticalnoniden-
tifiability,analogoustothatencounteredformixturemodelsinthecaseofdiscrete
latentvariables. Herethereisa continuumofparametersallofwhichleadtothe
samepredictivedensity,incontrasttothediscretenonidentifiabilityassociatedwith
componentre-labellinginthemixturesetting.
IfweconsiderthecaseofM =D,sothatthereisnoreductionofdimension-

ality,thenUM = UandLM = L. Makinguseoftheorthogonalityproperties


UUT =IandRRT=I,weseethatthecovarianceCofthemarginaldistribution


forx becomes

(12.47)

andsoweobtainthestandardmaximumlikelihoodsolutionfor anunconstrained
Gaussiandistributioninwhichthecovariancematrixis givenbythesamplecovari-
ance.
ConventionalPCAis generallyformulatedasa projectionofpointsfromtheD-
dimensionaldataspaceontoanM-dimensionallinearsubspace.ProbabilisticPCA,
however,is mostnaturallyexpressedasa mappingfromthelatentspaceintothedata
spacevia(12.33).Forapplicationssuchasvisualizationanddatacompression,we
canreversethismappingusingBayes'theorem.Anypointxindataspacecanthen
besummarizedbyitsposteriormeanandcovarianceinlatentspace.From(12.42)
themeanis givenby

whereMis givenby(12.41).Thisprojectstoa pointindataspacegivenby

WlE[zlx]+J-L.


(12.48)

(12.49)

Section3.3.1 Notethatthistakesthesameformastheequationsforregularizedlinearregression
andisa consequenceofmaximizingthelikelihoodfunctionfora linearGaussian
model. Similarly,theposteriorcovarianceisgivenfrom(12.42)by0-2M-^1 andis
independentofx.
Ifwetakethelimit0-^2 ----t0,thentheposteriormeanreducesto

(12.50)

Exercise 12.11

Exercise 12.12


Section2.3


whichrepresentsanorthogonalprojectionofthedatapointontothelatentspace,
andsowerecoverthestandardPCAmodel.Theposteriorcovarianceinthislimitis

zero,however,andthe densitybecomessingular.For0-^2 >0,thelatentprojection


is shiftedtowardstheorigin,relativetotheorthogonalprojection.
Finally,wenotethatanimportantrolefortheprobabilisticPCAmodelisin
defininga multivariateGaussiandistributioninwhichthenumberofdegreesoffree-
dom,inotherwordsthenumberofindependentparameters,canbecontrolledwhilst
stillallowingthemodel tocapturethedominantcorrelationsinthedata. Recall
thata generalGaussiandistributionhasD(D+1)/2independentparametersinits
covariancematrix(plusanotherDparametersinits mean). Thusthenumberof
parametersscalesquadraticallywithDandcanbecomeexcessiveinspacesofhigh
Free download pdf