576 12.CONTINUOUSLATENTVARIABLES
Therotationalinvarianceinlatentspacerepresentsa formofstatisticalnoniden-
tifiability,analogoustothatencounteredformixturemodelsinthecaseofdiscrete
latentvariables. Herethereisa continuumofparametersallofwhichleadtothe
samepredictivedensity,incontrasttothediscretenonidentifiabilityassociatedwith
componentre-labellinginthemixturesetting.
IfweconsiderthecaseofM =D,sothatthereisnoreductionofdimension-
ality,thenUM = UandLM = L. Makinguseoftheorthogonalityproperties
UUT =IandRRT=I,weseethatthecovarianceCofthemarginaldistribution
forx becomes
(12.47)
andsoweobtainthestandardmaximumlikelihoodsolutionfor anunconstrained
Gaussiandistributioninwhichthecovariancematrixis givenbythesamplecovari-
ance.
ConventionalPCAis generallyformulatedasa projectionofpointsfromtheD-
dimensionaldataspaceontoanM-dimensionallinearsubspace.ProbabilisticPCA,
however,is mostnaturallyexpressedasa mappingfromthelatentspaceintothedata
spacevia(12.33).Forapplicationssuchasvisualizationanddatacompression,we
canreversethismappingusingBayes'theorem.Anypointxindataspacecanthen
besummarizedbyitsposteriormeanandcovarianceinlatentspace.From(12.42)
themeanis givenby
whereMis givenby(12.41).Thisprojectstoa pointindataspacegivenby
WlE[zlx]+J-L.
(12.48)
(12.49)
Section3.3.1 Notethatthistakesthesameformastheequationsforregularizedlinearregression
andisa consequenceofmaximizingthelikelihoodfunctionfora linearGaussian
model. Similarly,theposteriorcovarianceisgivenfrom(12.42)by0-2M-^1 andis
independentofx.
Ifwetakethelimit0-^2 ----t0,thentheposteriormeanreducesto
(12.50)
Exercise 12.11
Exercise 12.12
Section2.3
whichrepresentsanorthogonalprojectionofthedatapointontothelatentspace,
andsowerecoverthestandardPCAmodel.Theposteriorcovarianceinthislimitis
zero,however,andthe densitybecomessingular.For0-^2 >0,thelatentprojection
is shiftedtowardstheorigin,relativetotheorthogonalprojection.
Finally,wenotethatanimportantrolefortheprobabilisticPCAmodelisin
defininga multivariateGaussiandistributioninwhichthenumberofdegreesoffree-
dom,inotherwordsthenumberofindependentparameters,canbecontrolledwhilst
stillallowingthemodel tocapturethedominantcorrelationsinthedata. Recall
thata generalGaussiandistributionhasD(D+1)/2independentparametersinits
covariancematrix(plusanotherDparametersinits mean). Thusthenumberof
parametersscalesquadraticallywithDandcanbecomeexcessiveinspacesofhigh