578 12.CONTINUOUSLATENTVARIABLES
areassumedindependent,thecomplete-dataloglikelihoodfunctiontakestheform
N
Inp(X,ZIJL,W,(J2)= L{lnp(xnlzn) +lnp(zn)}
n=l
(12.52)
wherethenthrowofthematrixZisgivenbyZn.Wealreadyknowthattheexact
maximumlikelihoodsolutionforJLis givenbythesamplemeanxdefinedby(12.1),
andit isconvenienttosubstituteforJLatthisstage.Makinguseoftheexpressions
(12.31)and(12.32)forthelatentandconditionaldistributions,respectively,andtak-
ingtheexpectationwithrespecttotheposteriordistributionoverthelatentvariables,
weobtain
Notethatthisdependsontheposteriordistributiononlythroughthesufficientstatis-
ticsoftheGaussian.ThusintheEstep,weusetheoldparametervaluestoevaluate
M-1WT(Xn - x)
(J2M-^1 +lE[zn]lE[zn]T
(12.54)
(12.55)
Exercise 12.15
whichfollowdirectlyfromtheposteriordistribution(12.42)togetherwiththestan-
dardresultlE[znz~]= cov[zn]+JE[zn]JE[zn]T.HereMis definedby(12.41).
IntheMstep,wemaximizewithrespecttoWand(J2,keepingtheposterior
statisticsfixed. Maximizationwithrespectto(T2isstraightforward.Forthemaxi-
mizationwithrespecttoW wemakeuseof(C.24),andobtaintheM-stepequations
Wnew
2
(Jnew =
[t,exn-X)IlIZn]T] [t,Il[ZnZ~]]-'
1 N
NDL {llxn- xl1
2
- 2lE[zn]TW~ew(xn- x)
n=l
+Tr(JE[znzJ]W~ewWnew)}.
(12.56)
(12.57)
TheEMalgorithmforprobabilisticPCAproceedsbyinitializingtheparameters
andthenalternatelycomputingthesufficientstatisticsofthelatentspaceposterior
distributionusing(12.54)and(12.55)intheE stepandrevisingtheparametervalues
using(12.56)and(12.57)intheMstep.
OneofthebenefitsoftheEMalgorithmforPCAiscomputationalefficiency
forlarge-scaleapplications(Roweis,1998).UnlikeconventionalPCAbasedonan