Section4.4
Section3.5.3
12.2.ProbabilisticpeA 583
Becausethisintegrationisintractable,wemakeuseoftheLaplaceapproxima-
tion.Ifweassumethattheposteriordistributionissharplypeaked,aswilloccurfor
sufficientlylargedatasets,thenthere-estimationequationsobtainedbymaximizing
themarginallikelihoodwithrespecttoaitakethesimpleform
(12.62)
whichfollowsfrom(3.98),notingthatthedimensionalityofWiisD. Thesere-
estimationsareinterleavedwiththeEMalgorithmupdatesfordeterminingWand
a^2 • TheE-stepequationsareagaingivenby(12.54)and(12.55). Similarly,theM-
stepequationfora^2 isagaingivenby(12.57). TheonlychangeistotheM-step
equationforW,whichismodifiedtogive
(12.63)
whereA= diag(ai)'ThevalueofI-"isgivenbythesamplemean,asbefore.
IfwechooseM = D- 1 then,ifallaivaluesarefinite,themodelrepresents
a full-covarianceGaussian,whileifalltheaigotoinfinitythemodelisequivalent
toanisotropicGaussian,andsothemodelcanencompassallpennissiblevaluesfor
theeffectivedimensionalityoftheprincipalsubspace.Itis alsopossibletoconsider
smallervaluesofM,whichwillsaveoncomputationalcostbutwhichwilllimit
themaximumdimensionalityofthesubspace. Acomparisonoftheresultsofthis
algorithmwithstandardprobabilisticPCAis showninFigure12.14.
BayesianPCAprovidesanopportunitytoillustratetheGibbssamplingalgo-
rithmdiscussedinSection11.3. Figure12.15showsanexampleofthesamples
fromthehyperparametersInaifora datasetinD= 4 dimensionsinwhichthedi-
mensionalityofthelatentspaceisM =3 butinwhichthedatasetis generatedfrom
a probabilisticPCAmodelhavingonedirectionofhighvariance,withtheremaining
directionscomprisinglowvariancenoise.Thisresultshowsclearlythepresenceof
threedistinctmodesintheposteriordistribution.Ateachstepoftheiteration,oneof
thehyperparametershasa smallvalueandtheremainingtwohavelargevalues,so
thattwoofthethreelatentvariablesaresuppressed.DuringthecourseoftheGibbs
sampling,thesolutionmakessharptransitionsbetweenthethreemodes.
Themodeldescribedhereinvolvesa prioronlyoverthematrixW. Afully
BayesiantreatmentofPCA,includingpriorsover1-", a^2 ,andn,andsolvedus-
ingvariationalmethods,isdescribedinBishop(1999b). Fora discussionofvari-
ousBayesianapproachestodetenniningtheappropriatedimensionalityfora PCA
model,seeMinka(2001c).
12.2.4 Factor analysis
Factoranalysisisa linear-Gaussianlatentvariablemodelthatis closelyrelated
toprobabilisticPCA.ItsdefinitiondiffersfromthatofprobabilisticPCAonlyinthat
theconditionaldistributionoftheobservedvariablexgiventhelatentvariablez is