584 12.CONTINUOUSLATENTVARIABLES
- •
•• • • • - • • •
•• •
- • • •
•
••
- • • •
- • • •
- •
- •
- •
- •
- ••
- •
- •
Figure12.14 'Hinloo'diagramsofthematrixW inwhicheachelement 01 thematrixisdepictedas
a square(whitelorpositiveandblacklornegativevalues)whoseareaisproportional
tothemagnitudeofthatelement. Thesyntheticdataselcomprises 300 datapointsin
D= 10 dimensionssampledfroma Gaussiandistributionhavingstandarddeviation1.0
in 3 directionsandstandarddeviation0.5intheremaining7 directionsforadatasetin
D= 10 dimensionshavingAT=3 directionswithlargervariancethantheremaining 7
directions.Theleft-handplolshowstheresultIrommaximumlikelihoodprobabilisticPCA,
andtheleft·handplotshowsthecorrespondingresuftfromBayesianpeA.Weseehow
theBayesianmodelis abletodiscovertheappropriatedimensionalitybysuppressingthe
6 surplusdegreesoffreedom.
takentohavea diagonalratherthananisotropiccovariancesothat
p(xlz)=N(xlWz+1'.\II) (12.64)
whereillis aDxDdiagonalmatrix.Notethatthefactoranalysismodel,incommon
withprobabilisticPCA.assumesthattheobservedvariablesXl,...,Xoareindepen-
dent.giventhelatentvariablez. Inessence.thefactoranalysismodelis explaining
theobservedcovariancestructureofthedatabyrepresentingtheindependentvari-
anceassociatedwitheachcoordinateinthematrix1J.'andcapturingthecovariance
betweenvariablesinthematrixW. Inthefactoranalysisliterature.thecolumns
ofW.whichcapturethecorrelationsbetweenobservedvariables.arecalledfaclOr
loadings.andthediagonalelementsof1J.'.whichrepresenttheindependentnoise
variancesforeachofthevariables,arecalledllniqllenesses.
TheoriginsoffactoranalysisareasoldasthoseofPCA.anddiscussionsof
factoranalysiscanbefoundinthebooksbyEveritt(1984).Bartholomew(1987),
andBasilevsky(1994). LinksbetweenfactoranalysisandPCAwereinvestigated
byLilwley(1953)andAnderson(1963)whoshowedthatatstationarypointsof
thelikelihoodfunction.fora faclOranalysismodelwith1J.' = (121,thecolumnsof
W arescaledeigenvectorsofthesamplecovariancematrix.and(12istheaverage
ofthediscardedeigenvalues. Later.TippingandBishop(1999b)showedthatthe
maximumoftheloglikelihoodfunctionoccurswhentheeigenvectorscomprising
Warechosentobetheprincipaleigenvectors.
Makinguseof(2.115).weseethatthemarginal distributionfortheobserved