Pattern Recognition and Machine Learning

(Jeff_L) #1
12.2.l'ru":ohilislkI'CA 585

FllIure12.15 Gillbs.,,,,>p!j"lllo<Bay<lslan
PCAsh<Mingplots oj Ino,

versus ~eralion number br


three " values. showing
tr"""tions betw..... tbe
th"'"moOts<A!heposterior
distribution.

,-"riabl,i'gi,-,nby1'(x)~N(Xlj',C)whe...now


C=WWT+'i'. (12,6~)


Eurr"e 12,19

S"na"12.4


AswithprobabilisticPCA,thi,moMIisim-"ri.rrlto'Olalionsin11><0latent'pace.
Histoocally,factoranal)',;shasbeenlhe,ubjerlofcOl1tro,-ersywroe"a!tempt<
h",-ebttn"'a<k:toplaceanintc'P"'t"liooontheind;vidualfaclon(thecOOfdinates
in z_space).whichh3.\ pm"enproblematicduetolr.e"""i<lcmifiabililyoffactOf
analysisassocimedwithMation'inthis'pace. Fromoorperspeoh-e,howe,-er.we
shall.iewfactoranalysisasa formoflalent"ariabledensilymodel.inwhichthe

formoftl>clalent'pacei'ofinterestbutnO!the particularchoiccofcoordinates


usedtodescrit>cil.Ifwewishtoremovethedegeneracya'sociatedwithlatent'pace
roIations.""emu,tcon'idernon-Gaussianlatent,-"riabledi'tribution,.gi"irrgrise 10
independentcomponent.n.lysi,(lCA)models.
Wecandetenni"etheparametersI'.\V."nd....inthefac!Ofan.ly,i,modelby

muimumlikelihood. 11 ..solutionforI'i'ag"ingivenbythe",,,,pie"'ean.How·


eyC'."nli~eprobabili,ticl'CA.lllcrei'nolongera closed-formmaximumlikelihood


solutionfor\V.",'hichmu.\ltherdorcbefoundi'er.li,'c1)'_Becausefacloranal)',i.is
a latentvariablemodeLthi'canbedon.usinganEMalgorilhm(R.binandThayer.
1982)!h"tis "nalogou,totheoneused(Ofpml>;lbili.tiePeA.Specihcally.lheE-'lep
eqnJtioo,areg;'-enby

where""eh",'edefi""d

E[zoJ = GWT",-'(xn- xl


E[z"z~J _ G+E[zo]E[z,,]T


(12,66)
(1267)

(l2,6H)

NOieth"tthi'i'e.pre,<edina for'"thaiin,-oh'esinycrsi"nofmalrices"fSilO,\I x,If


rathe'lhanDxD(ex"",,,,fortbeDxDdiagooalmatrixoJ'"'hosein,-ersei.''ri"ial
Free download pdf