586 12.CONTINUOUSLATENTVARIABLES
Exercise 12.22
tocomputeinO(D)steps),whichis convenientbecauseoftenM « D.Similarly,
theM-step equationstaketheformwnew [~(x"-XllllIZn]"] [~Ill[Znz~I]-'
diag{s-W.'w~~1ll[Zn](Xn_xl"}
(12.69)(12.70)wherethe'diag'operatorsetsallofthenondiagonalelementsofa matrixtozero.A
Bayesiantreatmentofthefactoranalysismodelcanbeobtainedbya straightforward
applicationofthetechniquesdiscussedinthisbook.
AnotherdifferencebetweenprobabilisticPCAandfactoranalysisconcernstheir
Exercise 12.25 differentbehaviourundertransformationsofthedataset.ForPCAandprobabilis-
ticPCA,if werotatethecoordinatesystemindataspace,thenweobtainexactly
thesamefittothedatabutwiththeW matrixtransformedbythecorresponding
rotationmatrix. However,forfactoranalysis,theanalogouspropertyisthatifwe
makea component-wisere-scalingofthedatavectors,thenthisisabsorbedintoa
correspondingre-scalingoftheelementsof)i.
12.3. KernelpeA
InChapter6,wesawhowthetechniqueofkernelsubstitutionallowsustotakean
algorithm expressedintermsofscalarproductsoftheformxTx'andgeneralize
thatalgorithmbyreplacingthescalarproductswitha nonlinearkernel. Herewe
applythistechniqueofkernelsubstitutiontoprincipalcomponentanalysis,thereby
obtaininga nonlineargeneralizationcalledkernelpeA(Scholkopfetal.,1998).Considera dataset{xn}ofobservations,wheren = 1,...,N,ina spaceof
dimensionalityD. Inordertokeepthenotationuncluttered,weshallassumethat
wehavealreadysubtractedthesamplemeanfromeachofthevectorsXn,sothat
LnXn= O. ThefirststepistoexpressconventionalPCAinsucha formthatthedatavectors{xn}appearonlyintheformofthescalar productsx~Xm.Recallthat
theprincipalcomponentsaredefinedbytheeigenvectorsUiofthecovariancematrixSUi= AiUi (12.71)wherei= 1,...,D.HeretheDxDsample covariancematrixSisdefinedby
(12.72)andtheeigenvectorsarenormalizedsuchthatuTUi= 1.
Nowconsidera nonlineartransformation¢(x)intoanM-dimensionalfeature