Pattern Recognition and Machine Learning

(Jeff_L) #1

586 12.CONTINUOUSLATENTVARIABLES


Exercise 12.22


tocomputeinO(D)steps),whichis convenientbecauseoftenM « D.Similarly,
theM-step equationstaketheform

wnew [~(x"-XllllIZn]"] [~Ill[Znz~I]-'


diag{s-W.'w~~1ll[Zn](Xn_xl"}


(12.69)

(12.70)

wherethe'diag'operatorsetsallofthenondiagonalelementsofa matrixtozero.A
Bayesiantreatmentofthefactoranalysismodelcanbeobtainedbya straightforward
applicationofthetechniquesdiscussedinthisbook.
AnotherdifferencebetweenprobabilisticPCAandfactoranalysisconcernstheir
Exercise 12.25 differentbehaviourundertransformationsofthedataset.ForPCAandprobabilis-
ticPCA,if werotatethecoordinatesystemindataspace,thenweobtainexactly
thesamefittothedatabutwiththeW matrixtransformedbythecorresponding
rotationmatrix. However,forfactoranalysis,theanalogouspropertyisthatifwe
makea component-wisere-scalingofthedatavectors,thenthisisabsorbedintoa
correspondingre-scalingoftheelementsof)i.


12.3. KernelpeA


InChapter6,wesawhowthetechniqueofkernelsubstitutionallowsustotakean
algorithm expressedintermsofscalarproductsoftheformxTx'andgeneralize
thatalgorithmbyreplacingthescalarproductswitha nonlinearkernel. Herewe
applythistechniqueofkernelsubstitutiontoprincipalcomponentanalysis,thereby
obtaininga nonlineargeneralizationcalledkernelpeA(Scholkopfetal.,1998).

Considera dataset{xn}ofobservations,wheren = 1,...,N,ina spaceof


dimensionalityD. Inordertokeepthenotationuncluttered,weshallassumethat
wehavealreadysubtractedthesamplemeanfromeachofthevectorsXn,sothat
LnXn= O. ThefirststepistoexpressconventionalPCAinsucha formthatthe

datavectors{xn}appearonlyintheformofthescalar productsx~Xm.Recallthat


theprincipalcomponentsaredefinedbytheeigenvectorsUiofthecovariancematrix

SUi= AiUi (12.71)

wherei= 1,...,D.HeretheDxDsample covariancematrixSisdefinedby


(12.72)

andtheeigenvectorsarenormalizedsuchthatuTUi= 1.
Nowconsidera nonlineartransformation¢(x)intoanM-dimensionalfeature

space,sothateachdatapointXnistherebyprojectedontoa point¢(xn).Wecan

Free download pdf