Pattern Recognition and Machine Learning

(Jeff_L) #1
588 12.CONTINUOUSLATENTVARIABLES

Substitutingthisexpansionbackintotheeigenvectorequation,weobtain

1 N N N
N L ¢(xn)¢(xn)TL aim¢(Xm)= AiL ain¢(Xn),
n=l m=l n=l

(12.77)

Thekeystepis nowtoexpressthisintermsofthekernelfunctionk(xn,xm)=

¢(Xn)T¢(xm),whichwedobymultiplyingbothsidesby¢(xZ)Ttogive


1 N m N
N Lk(XI'Xn) L aimk(Xn,xm)= AiLaink(XI'Xn),
n=l m=l n=l
Thiscanbewritteninmatrixnotationas

(12.78)

(12.79)

whereaiisanN-dimensionalcolumnvectorwithelementsaniforn= 1,...,N.


Wecanfindsolutionsforaibysolvingthefollowingeigenvalueproblem

(12.80)

Exercise 12.26


inwhichwehaveremoveda factorofK frombothsidesof(12.79). Notethat
thesolutionsof(12.79)and(12.80)differonlybyeigenvectorsofK havingzero
eigenvaluesthatdonotaffecttheprincipalcomponentsprojection.
Thenormalizationconditionforthecoefficientsaiisobtainedbyrequiringthat
theeigenvectorsinfeaturespacebenormalized.Using(12.76)and(12.80),wehave

N N
1 =V;Vi=L L ainaim¢(xn)T¢(xm)=a;K~=AiNa;ai' (12.81)
n=lm=l
Havingsolvedtheeigenvectorproblem,theresultingprincipalcomponentpro-
jectionscanthenalsobecastintermsofthekernelfunctionsothat,using(12.76),
theprojectionofa pointxontoeigenvectoriisgivenby

N N
Yi(X)=¢(x)TVi=L ain¢(x)T¢(xn)=L aink(X,xn) (12.82)
n=l n=l
andsoagainis expressedintermsofthekernelfunction.
IntheoriginalD-dimensionalxspacethereareDorthogonaleigenvectorsand
hencewecanfindatmostDlinearprincipalcomponents. ThedimensionalityM
ofthefeaturespace,however,canbemuchlargerthanD(eveninfinite),andthus
wecanfinda numberofnonlinearprincipalcomponentsthatcanexceedD. Note,
however,thatthenumberofnonzeroeigenvaluescannotexceedthenumberNof
datapoints,because(evenifM > N)thecovariancematrixinfeaturespacehas
rankatmostequaltoN.ThisisreflectedinthefactthatkernelPCAinvolvesthe
eigenvectorexpansionoftheN xNmatrixK.
Free download pdf