588 12.CONTINUOUSLATENTVARIABLES
Substitutingthisexpansionbackintotheeigenvectorequation,weobtain
1 N N N
N L ¢(xn)¢(xn)TL aim¢(Xm)= AiL ain¢(Xn),
n=l m=l n=l
(12.77)
Thekeystepis nowtoexpressthisintermsofthekernelfunctionk(xn,xm)=
¢(Xn)T¢(xm),whichwedobymultiplyingbothsidesby¢(xZ)Ttogive
1 N m N
N Lk(XI'Xn) L aimk(Xn,xm)= AiLaink(XI'Xn),
n=l m=l n=l
Thiscanbewritteninmatrixnotationas
(12.78)
(12.79)
whereaiisanN-dimensionalcolumnvectorwithelementsaniforn= 1,...,N.
Wecanfindsolutionsforaibysolvingthefollowingeigenvalueproblem
(12.80)
Exercise 12.26
inwhichwehaveremoveda factorofK frombothsidesof(12.79). Notethat
thesolutionsof(12.79)and(12.80)differonlybyeigenvectorsofK havingzero
eigenvaluesthatdonotaffecttheprincipalcomponentsprojection.
Thenormalizationconditionforthecoefficientsaiisobtainedbyrequiringthat
theeigenvectorsinfeaturespacebenormalized.Using(12.76)and(12.80),wehave
N N
1 =V;Vi=L L ainaim¢(xn)T¢(xm)=a;K~=AiNa;ai' (12.81)
n=lm=l
Havingsolvedtheeigenvectorproblem,theresultingprincipalcomponentpro-
jectionscanthenalsobecastintermsofthekernelfunctionsothat,using(12.76),
theprojectionofa pointxontoeigenvectoriisgivenby
N N
Yi(X)=¢(x)TVi=L ain¢(x)T¢(xn)=L aink(X,xn) (12.82)
n=l n=l
andsoagainis expressedintermsofthekernelfunction.
IntheoriginalD-dimensionalxspacethereareDorthogonaleigenvectorsand
hencewecanfindatmostDlinearprincipalcomponents. ThedimensionalityM
ofthefeaturespace,however,canbemuchlargerthanD(eveninfinite),andthus
wecanfinda numberofnonlinearprincipalcomponentsthatcanexceedD. Note,
however,thatthenumberofnonzeroeigenvaluescannotexceedthenumberNof
datapoints,because(evenifM > N)thecovariancematrixinfeaturespacehas
rankatmostequaltoN.ThisisreflectedinthefactthatkernelPCAinvolvesthe
eigenvectorexpansionoftheN xNmatrixK.