12.3.KernelPCA 589
Sofarwehaveassumedthattheprojecteddatasetgivenby¢(xn)haszero
mean,whichingeneralwillnotbethecase. Wecannotsimplycomputeandthen
subtractoffthemean,sincewewishtoavoidworkingdirectlyinfeaturespace,and
soagain,weformulatethealgorithmpurelyin -!ermsofthekernelfunction. The
projecteddatapointsaftercentralizing,denoted¢(xn),aregivenby
andthecorrespondingelementsoftheGrammatrixaregivenby
Knm = ¢(xn)T¢(xm)
1 N
¢(xn)T¢(xm) - N L ¢(xn)T¢(xZ)
Z=l
1 N 1 N N
- NL¢(XZ)T¢(Xm)+N2LL¢(Xj)T¢(xZ)
Z=l j=lZ=l
1 N
k(xn,xm) - NL k(xz,xm)
Z=l
1 N 1 N N
- N Lk(xn,xz)+N2LLk(Xj,Xl)'
Z=l j=l1=1
Thiscanbeexpressedinmatrixnotationas
(12.83)
(12.84)
(12.85)
Exercise 12.27
whereINdenotesthe~N xN matrixinwhicheveryelementtakesthe~ valuel/N.
ThuswecanevaluateKusingonlythekernelfunctionandthenuseKtodetermine
theeigenvaluesandeigenvectors.NotethatthestandardPCAalgorithmis recovered
asa specialcaseifweusea linearkernelk(x,x')= xTx/.Figure12.17showsan
exampleofkernelPCAappliedtoa syntheticdataset(Scholkopfet al.,1998).Here
a 'Gaussian'kerneloftheform
k(x,x')=exp(-llx- x/11^2 /0.1) (12.86)
is appliedtoa syntheticdataset.Thelinescorrespondtocontoursalongwhichthe
projectionontothecorrespondingprincipalcomponent,definedby
is constant.
N
¢(X?Vi= L aink(X,xn)
n=l