598 12.CONTINUOUSLATENTVAK1AHU':S
.•.'"
FllIu.e12.21 ?lotottrleoillkYw<:lataWllisualiz.edusingPeAontheleftandGTMonItlengr,tFOftileGTM
model.each<latapoinIlsplollfldattilemeanotitsposM'k><dislributionin..tents;>ace,Tile"","ineantymlhe
GTM1TlOd8I._lhasepamlionbetwoonthegroupsofdatapointstobe.....n""".ckl.arfy,
Ch"l'l~fj
S~etioo/.4
Theno"liotarmappingisgi,'enbya linearregressionmodelthaIallow,forgeneral
IIO/llinearilywhilebeinga linearfuoctionoftileadapli'-eparameler<,NOIethaItilt
usuallimitationoflinearregressionmodelsarisingfromtheen"",ofdimen,iooalily
does 1101 ariseintheContr~1oflheGT~Isi""'ethe"\3nifoldgenerall)'ha<t,,'odi"ltn·
sionsirrespecti'-eofthedimensionalityofthedataspace, Acoo""!",,nceofIllese
11"0cooicesisthatthelikelihoodfunclioncanbee~pressedanalyticallyindosed
formandcanbeoptimilC<.!efficientlyo,ingtheEMalgorithm_TheresoltingGTM
model hIsa lwo-dimensionalnonlinearmanifold 10 tiledalasel.andbye"alualing
theposteriordistrilJ",lion(Werlatentspaceforthedatapoi"",theycanheprojectt<J
backtothelalent'JI'K'"for.'isualilalionpurposes,Figure12,21sl"""sa comparison
oftheoildata..,1"isualiredwilhlincarPeAandwilhlheIIO/lhnearGT~I,
TIltGTMcanbeseenasa probabilistic"'rsionofanearliernlOd<lcallMthe'''If
org"nidng""'p.orSOM(Kohonen.1982:Kobonen. (995).whichalsorepresents
a Iwo-dimensiooal IIO/llincarmanifoidasa regulararrayofdisc"'lepoints. The
SOM i'somewhat remin;""'ntofthe K·trlCan,algorithmin thatdatapointsare
a.,igr.edtonearbyProlOl)'j>C'-eclonthaIarelhensubsc<juenllyupdale<!. Initially.
lheproIOI)'jl('Saredistribuledatrandom,andduringthetrainingprocessthey'selr
organize'soastoaPl'ro~imalea smoolhmanifold. UnlikeK-mean'.how'e"e.. the
SOMisTIOIoptimizinganywell.ddine<!costfunction(Erwin..al..1992)making"
difficulttos."theparametersofthemodeland 10 assesscon'-ergence.Therei'also
noguaranteethatthe'",If-<>rganilalion'willtakeplace..thisisdepen""nl 00 the
choiceofappropriateparanlttcr"aloC'f,,,anyparticulardatasel.
ByOOfItrast,GTMoptimize,theloglikelihoodfunctioo,andtheresoltingmodel
define'a probabililyden,ityindma,pace, InfaeLilcorre,pondstoa con,m,incd
mi,tureofGaussian,inwhichthecomponent.',h.reaCOnlnlOn".riance.•ndthe
mean,arecon'trainedtolieona 'mooIhtw-o-diITlCn,iooaln1anifold. Thisproba-