Pattern Recognition and Machine Learning

(Jeff_L) #1
13.3. Linear Dynamical Systems 643

μnew 0 = E[z 1 ] (13.110)
Vnew 0 = E[z 1 zT 1 ]−E[z 1 ]E[zT 1 ]. (13.111)

Similarly, to optimizeAandΓ, we substitute forp(zn|zn− 1 ,A,Γ)in (13.108)
using (13.75) giving

Q(θ,θold)=−

N− 1

2

ln|Γ|

−EZ|θold

[
1
2

∑N

n=2

(zn−Azn− 1 )TΓ−^1 (zn−Azn− 1 )

]

+const (13.112)

in which the constant comprises terms that are independent ofAandΓ. Maximizing
Exercise 13.33 with respect to these parameters then gives


Anew =

(N

n=2

E

[
znzTn− 1

]

)(N

n=2

E

[
zn− 1 zTn− 1

]

)− 1
(13.113)

Γnew =

1

N− 1

∑N

n=2

{
E

[
znzTn

]
−AnewE

[
zn− 1 zTn

]

−E

[
znzTn− 1

]
Anew+AnewE

[
zn− 1 zTn− 1

]
(Anew)T

}

. (13.114)


Note thatAnewmust be evaluated first, and the result can then be used to determine
Γnew.
Finally, in order to determine the new values ofCandΣ, we substitute for
p(xn|zn,C,Σ)in (13.108) using (13.76) giving

Q(θ,θold)=−

N

2

ln|Σ|

−EZ|θold

[
1
2

∑N

n=1

(xn−Czn)TΣ−^1 (xn−Czn)

]

+const.

Exercise 13.34 Maximizing with respect toCandΣthen gives


Cnew =

(N

n=1

xnE

[
zTn

]

)(N

n=1

E

[
znzTn

]

)− 1
(13.115)

Σnew =

1

N

∑N

n=1

{
xnxTn−CnewE[zn]xTn

−xnE

[
zTn

]
Cnew+CnewE

[
znzTn

]
Cnew

}

. (13.116)

Free download pdf