13.3. Linear Dynamical Systems 643μnew 0 = E[z 1 ] (13.110)
Vnew 0 = E[z 1 zT 1 ]−E[z 1 ]E[zT 1 ]. (13.111)Similarly, to optimizeAandΓ, we substitute forp(zn|zn− 1 ,A,Γ)in (13.108)
using (13.75) givingQ(θ,θold)=−N− 1
2
ln|Γ|−EZ|θold[
1
2∑Nn=2(zn−Azn− 1 )TΓ−^1 (zn−Azn− 1 )]+const (13.112)in which the constant comprises terms that are independent ofAandΓ. Maximizing
Exercise 13.33 with respect to these parameters then gives
Anew =(N
∑n=2E
[
znzTn− 1])(N
∑n=2E
[
zn− 1 zTn− 1])− 1
(13.113)Γnew =1
N− 1
∑Nn=2{
E[
znzTn]
−AnewE[
zn− 1 zTn]−E
[
znzTn− 1]
Anew+AnewE[
zn− 1 zTn− 1]
(Anew)T}. (13.114)
Note thatAnewmust be evaluated first, and the result can then be used to determine
Γnew.
Finally, in order to determine the new values ofCandΣ, we substitute for
p(xn|zn,C,Σ)in (13.108) using (13.76) givingQ(θ,θold)=−N
2
ln|Σ|−EZ|θold[
1
2∑Nn=1(xn−Czn)TΣ−^1 (xn−Czn)]+const.Exercise 13.34 Maximizing with respect toCandΣthen gives
Cnew =(N
∑n=1xnE[
zTn])(N
∑n=1E
[
znzTn])− 1
(13.115)Σnew =1
N
∑Nn=1{
xnxTn−CnewE[zn]xTn−xnE[
zTn]
Cnew+CnewE[
znzTn]
Cnew}. (13.116)