Science - USA (2020-01-17)

(Antfer) #1

adapted to a commercial cryogenic vacuum
transfer system (Quorum Technologies, PP3010T;
fig. S6 and text S3). SIM images were pro-
cessed as described ( 95 ); SMLM processing
is described in text S15.


EM sample preparation


After optical imaging, samples were transfer-
red back to cryo-storage before being freeze-
substituted, resin-embedded, and re-embedded
(text S6b and S6c). Desired regions of interest
(ROIs) were identified in the plasticized speci-
mens (fig. S12) using an XRadia 510 Versa
micro X-Ray system (CarlZeissX-rayMicros-
copy Inc.) and then trimmed to expose small
(~100mm × 100mm×60mm) stubs (text S6d).


FIB-SEM imaging


Standard (8 nm × 8 nm × 8 nm isotropic voxel)
FIB-SEM datasets were generated using a cus-
tomized Zeiss Merlin crossbeam system ( 12 )
and further modified as specified in text S16.
TheSEMimagestackswereacquiredat500kHz
per pixel with an 8-nmx-ypixel using a 2-nA
electron beam at 1.2-kV landing energy for
imaging and a 15-nA gallium ion beam at
30 kV for FIB milling. Similarly, 4 nm × 4 nm ×
4 nm voxel datasets were generated using a
customized Zeiss GeminiSEM 500-Capella
crossbeam system. The block face was imaged
by a 250-pA electron beam with 0.9-kV landing
energy at 200 kHz. The final image stacks were
registered using a SIFT-based algorithm ( 96 ).


Computing resources


For most of the data analysis, except initial
SMLM peak detection and fitting, we used a
stand-alone Windows 10 x64 workstation with
dual Xeon Gold 5122 CPUs (3.60 GHz) and
1 TB of RAM. For SMLM peak detection and
fitting, we used up to 256 nodes on the Janelia
cluster.


REFERENCES AND NOTES



  1. D. W. Fawcett,The Cell(Saunders, ed. 2, 1981).

  2. H. D. Ouet al., ChromEMT: Visualizing 3D chromatin structure
    and compaction in interphase and mitotic cells.Science 357 ,
    eaag0025 (2017). doi:10.1126/science.aag0025;
    pmid: 28751582

  3. J. A. Briggs, Structural biology in situ—The potential of
    subtomogram averaging.Curr. Opin. Struct. Biol. 23 , 261– 267
    (2013). doi:10.1016/j.sbi.2013.02.003; pmid: 23466038

  4. A. Al-Amoudiet al., Cryo-electron microscopy of vitreous
    sections.EMBO J. 23 , 3583–3588 (2004). doi:10.1038/
    sj.emboj.7600366; pmid: 15318169

  5. A. Al-Amoudi, L. P. O. Norlen, J. Dubochet, Cryo-electron
    microscopy of vitreous sections of native biological cells and
    tissues.J. Struct. Biol. 148 , 131–135 (2004). doi:10.1016/
    j.jsb.2004.03.010; pmid: 15363793

  6. A. Al-Amoudi, D. Studer, J. Dubochet, Cutting artefacts and
    cutting process in vitreous sections for cryo-electron
    microscopy.J. Struct. Biol. 150 , 109–121 (2005). doi:10.1016/
    j.jsb.2005.01.003; pmid: 15797735

  7. B. Liuet al., Three-dimensional super-resolution protein
    localization correlated with vitrified cellular context.Sci. Rep. 5 ,
    13017 (2015). doi:10.1038/srep13017; pmid: 26462878

  8. M. Schafferet al., Optimized cryo-focused ion beam sample
    preparation aimed at in situ structural studies of membrane
    proteins.J. Struct. Biol. 197 ,73–82 (2017). doi:10.1016/
    j.jsb.2016.07.010; pmid: 27444390
    9. S. Pfeffer, J. Mahamid, Unravelling molecular complexity in
    structural cell biology.Curr. Opin. Struct. Biol. 52 , 111– 118
    (2018). doi:10.1016/j.sbi.2018.08.009; pmid: 30339965
    10. G. Knott, H. Marchman, D. Wall, B. Lich, Serial section
    scanning electronmicroscopy of adult brain tissue using
    focused ion beam milling.J. Neurosci. 28 , 2959–2964 (2008).
    doi:10.1523/JNEUROSCI.3189-07.2008; pmid: 18353998
    11. K. Narayan, S. Subramaniam, Focused ion beams in biology.
    Nat. Methods 12 , 1021–1031 (2015). doi:10.1038/nmeth.3623;
    pmid: 26513553
    12. C. S. Xuet al., Enhanced FIB-SEM systems for large-volume 3D
    imaging.eLife 6 , e25916 (2017). doi:10.7554/eLife.25916;
    pmid: 28500755
    13. K. J. Hayworth, N. Kasthuri, R. Schalek, J. W. Lichtman,
    Automating the Collection of Ultrathin Serial Sections for Large
    Volume TEM Reconstructions.Microsc. Microanal. 12 (S02),
    86 – 87 (2006). doi:10.1017/S1431927606066268
    14. D. D. Bocket al., Network anatomy andin vivophysiology of
    visual cortical neurons.Nature 471 , 177–182 (2011).
    doi:10.1038/nature09802; pmid: 21390124
    15. W. Denk, H. Horstmann, Serial block-face scanning electron
    microscopy to reconstruct three-dimensional tissue
    nanostructure.PLOS Biol. 2 , e329 (2004). doi:10.1371/journal.
    pbio.0020329; pmid: 15514700
    16. P. de Boer, J. P. Hoogenboom, B. N. G. Giepmans, Correlated
    light and electron microscopy: Ultrastructure lights up!Nat.
    Methods 12 , 503–513 (2015). doi:10.1038/nmeth.3400;
    pmid: 26020503
    17. M. Hauseret al., Correlative Super-Resolution Microscopy: New
    Dimensions and New Opportunities.Chem. Rev. 117 ,
    7428 – 7456 (2017). doi:10.1021/acs.chemrev.6b00604;
    pmid: 28045508
    18. E. Wegelet al., Imaging cellular structures in super-resolution
    with SIM, STED and Localisation Microscopy: A practical
    comparison.Sci. Rep. 6 , 27290 (2016). doi:10.1038/
    srep27290;pmid: 27264341
    19. D. R. Keene, K. McDonald, The ultrastructure of the connective
    tissue matrix of skin and cartilage after high-pressure freezing
    and freeze-substitution.J. Histochem. Cytochem. 41 ,1141– 1153
    (1993). doi:10.1177/41.8.8331280; pmid: 8331280
    20. K. L. McDonald, Electron microscopy and EM
    immunocytochemistry.Methods Cell Biol. 44 , 411–444 (1994).
    doi:10.1038/nmeth.1855; pmid: 22290187
    21. K. McDonald, M. Morphew, P. Verkade, T. Müller-Reichert,
    Recent advances in high-pressure freezing: Equipment and
    specimen loading methods.Methods Mol. Biol. 369 ,143– 173
    (2007).doi:10.1038/nmeth.1855; pmid: 22290187
    22. U. Schnell, F. Dijk, K. A. Sjollema, B. N. G. Giepmans,
    Immunolabeling artifacts and the need for live-cell imaging.
    Nat. Methods 9 , 152–158 (2012). doi:10.1038/nmeth.1855;
    pmid: 22290187
    23. D. Studer, B. M. Humbel, M. Chiquet, Electron microscopy of high
    pressure frozen samples: Bridging the gap between cellular
    ultrastructure and atomic resolution.Histochem. Cell Biol. 130 ,
    877 – 889 (2008). doi:10.1007/s00418-008-0500-1;pmid:18795316
    24. D. Studeret al., Capture of activity-induced ultrastructural
    changes at synapses by high-pressure freezing of brain tissue.
    Nat. Protoc. 9 , 1480–1495 (2014). doi:10.1038/
    nprot.2014.099; pmid: 24874814
    25. J. Z. Kiss, T. H. Giddings Jr., L. A. Staehelin, F. D. Sack,
    Comparison of the ultrastructure of conventionally fixed and
    high pressure frozen/freeze substituted root tips of Nicotiana
    and Arabidopsis.Protoplasma 157 ,64–74 (1990).
    doi:10.1007/BF01322639; pmid: 11538077
    26. R. Dahl, L. A. Staehelin, High-pressure freezing for the
    preservation of biological structure: Theory and practice.
    J. Electron Microsc. Tech. 13 , 165–174 (1989). doi:10.1002/
    jemt.1060130305; pmid: 2685196
    27. W. Li, S. C. Stein, I. Gregor, J. Enderlein, Ultra-stable and
    versatile widefield cryo-fluorescence microscope for single-
    molecule localization with sub-nanometer accuracy.Opt.
    Express 23 , 3770– 3783 (2015). doi:10.1364/OE.23.003770;
    pmid: 25836229
    28. M. A. Schwentker, thesis, Kirchhoff Institute for Physics
    (2007). doi:10.11588/heidok.00007677
    29. M. W. Tuijtel, A. J. Koster, S. Jakobs, F. G. A. Faas, T. H. Sharp,
    Correlative cryo super-resolution light and electron microscopy
    on mammalian cells using fluorescent proteins.Sci. Rep. 9 ,
    1369 (2019). doi:10.1038/s41598-018-37728-8;
    pmid: 30718653
    30. Y.-W. Changet al., Correlated cryogenic photoactivated
    localization microscopy and cryo-electron tomography.Nat.
    Methods 11 , 737–739 (2014). doi:10.1038/nmeth.2961;
    pmid: 24813625
    31. R. Kaufmannet al., Super-resolution microscopy using
    standard fluorescent proteins in intact cells under
    cryo-conditions.Nano Lett. 14 , 4171–4175 (2014). doi:10.1021/
    nl501870p; pmid: 24884378
    32. P. D. Dahlberget al., Identification of PAmKate as a Red
    Photoactivatable Fluorescent Protein for Cryogenic
    Super-Resolution Imaging.J. Am. Chem. Soc. 140 , 12310– 12313
    (2018). doi:10.1021/jacs.8b05960; pmid: 30222332
    33. F. Moseret al., Cryo-SOFI enabling low-dose super-resolution
    correlative light and electron cryo-microscopy.Proc. Natl.
    Acad. Sci. U.S.A. 116 , 4804–4809 (2019). doi:10.1073/
    pnas.1810690116; pmid: 30808803
    34. L. Wanget al., Solid immersion microscopy images cells under
    cryogenic conditions with 12 nm resolution.Commun. Biol. 2 ,
    74 (2019). doi:10.1038/s42003-019-0317-6; pmid: 30820469
    35. J. B. Grimmet al., A general method to fine-tune fluorophores
    for live-cell andin vivoimaging.Nat. Methods 14 , 987– 994
    (2017). doi:10.1038/nmeth.4403; pmid: 28869757
    36.G. V. Loset al., HaloTag: A novel protein labeling technology
    for cell imaging and protein analysis.ACS Chem. Biol. 3 ,
    373 – 382 (2008). doi:10.1021/cb800025k; pmid: 18533659
    37. A. Keppleret al., A general method for the covalent labeling of
    fusion proteins with small molecules in vivo.Nat. Biotechnol.
    21 ,86–89 (2003). doi:10.1038/nbt765; pmid: 12469133
    38. A. Gautieret al., An engineered protein tag for multiprotein
    labeling in living cells.Chem. Biol. 15 , 128–136 (2008).
    doi:10.1016/j.chembiol.2008.01.007; pmid: 18291317
    39. D. Kimet al., Correlative stochastic optical reconstruction
    microscopy and electron microscopy.PLOS ONE 10 , e0124581
    (2015). doi:10.1371/journal.pone.0124581; pmid: 25874453
    40. C. J. Peddieet al., Correlative super-resolution fluorescence
    and electron microscopy using conventional fluorescent
    proteins in vacuo.J. Struct. Biol. 199 , 120–131 (2017).
    doi:10.1016/j.jsb.2017.05.013; pmid: 28576556
    41. M. G. Paez-Segalaet al., Fixation-resistant photoactivatable
    fluorescent proteins for CLEM.Nat. Methods 12 , 215– 218
    (2015). doi:10.1038/nmeth.3225; pmid: 25581799
    42. E. Johnsonet al., Correlative in-resin super-resolution and
    electron microscopy using standard fluorescent proteins.
    Sci. Rep. 5 , 9583 (2015). doi:10.1038/srep09583;
    pmid: 25823571
    43. N. Matsko, M. Mueller, Epoxy resin as fixative during
    freeze-substitution.J. Struct. Biol. 152 ,92–103 (2005).
    doi:10.1016/j.jsb.2005.07.005; pmid: 16214372
    44. J. A. Bogovic, P. Hanslovsky, A. Wong, S. Saalfeld, in2016 IEEE
    13thInternational Symposium on Biomedical Imaging (ISBI)
    (IEEE, 2016), pp. 1123–1126;http://ieeexplore.ieee.org/
    document/7493463/.
    45. A. Sugiura, G.-L. McLelland, E. A. Fon, H. M. McBride, A new
    pathway for mitochondrial quality control: Mitochondrial-
    derived vesicles.EMBO J. 33 ,2142–2156 (2014).
    doi:10.15252/embj.201488104; pmid: 25107473
    46. B. Burke, J. Ellenberg, Remodelling the walls of the nucleus.
    Nat. Rev. Mol. Cell Biol. 3 , 487–497 (2002). doi:10.1038/
    nrm860; pmid: 12094215
    47. D. J. Anderson, M. W. Hetzer, Reshaping of the endoplasmic
    reticulum limits the rate for nuclear envelope formation.
    J. Cell Biol. 182 , 911–924 (2008). doi:10.1083/jcb.200805140;
    pmid: 18779370
    48. J. Ellenberget al., Nuclear membrane dynamics and
    reassembly in living cells: Targeting of an inner nuclear
    membrane protein in interphase and mitosis.J. Cell Biol. 138 ,
    1193 – 1206 (1997). doi:10.1083/jcb.138.6.1193; pmid: 9298976
    49. L. Lu, M. S. Ladinsky, T. Kirchhausen, Cisternal organization
    of the endoplasmic reticulum during mitosis.Mol. Biol. Cell 20 ,
    3471 – 3480 (2009). doi:10.1091/mbc.e09-04-0327;
    pmid: 19494040
    50. J. J. Smith, J. D. Aitchison, Peroxisomes take shape.Nat. Rev.
    Mol. Cell Biol. 14 , 803–817 (2013). doi:10.1038/nrm3700;
    pmid: 24263361
    51. M. Grabenbauer, K. Sätzler, E. Baumgart, H. D. Fahimi,
    Three-dimensional ultrastructural analysis of peroxisomes in
    HepG2 cells.Cell Biochem. Biophys. 32 ,37–49 (2000).
    doi:10.1385/CBB:32:1-3:37; pmid: 11330069
    52. M. Veenhuis, S. E. Wendelaar Bonga, Cytochemical localization
    of catalase and several hydrogen peroxide-producing oxidases
    in the nucleoids and matrix of rat liver peroxisomes.
    Histochem. J. 11 , 561–572 (1979). doi:10.1007/BF01012539;
    pmid: 511592
    53. S. Angermüller, H. D. Fahimi, Selective cytochemical
    localization ofperoxidase, cytochrome oxidase and catalase in
    rat liver with 3,3′-diaminobenzidine.Histochemistry 71 ,33– 44
    (1981). doi:10.1007/BF00592568; pmid: 6262282


Hoffmanet al.,Science 367 , eaaz5357 (2020) 17 January 2020 11 of 12


RESEARCH | RESEARCH ARTICLE

Free download pdf