Science - USA (2020-01-03)

(Antfer) #1

To conclude, the above analysis shows how
basic topological counting rules can be used
to estimate the relative stability of frequently
encountered knots and tangles. From a theo-
retical perspective, the parallels with long-
range coupled spin systems suggest that the
statistical mechanics ( 4 , 21 )ofgeneralknotted
structurescanbeformulatedwithinthisframe-
work. Tangled vortices ( 12 , 17 ) in complex fluids
and defect loops in liquid crystals ( 15 ) may
permit similar statistical descriptions through
reduction to topological crossing diagrams. In
elastic systems, joint experimental and theo-
retical progress is needed to untangle long-
standing puzzles regarding the statistics of
knots in DNA ( 18 ) and proteins ( 20 , 21 ), where
thermal effects induce a finite persistence
length, and other macroscopic structures
( 8 , 24 ). In sailing, climbing, and many other
applications, nontopological material param-
eters and contact geometry ( 30 )alsoplayim-
portant mechanical roles and must be included
in more refined continuum models to quanti-
tatively describe practically relevant knotting
phenomena. From a broader conceptual and
practical perspective, the above topological
mechanics framework seems well suited for
designing and exploring new classes of knots
with desired behaviors under applied load.


REFERENCES AND NOTES



  1. J. C. Turner, P. van de Griend, Eds.,History and Science of
    Knots, vol. 11 ofK & E Series on Knots and Everything
    (World Scientific, 1996).

  2. C. W. Ashley,The Ashley Book of Knots(Doubleday Books,
    1944).
    3. J. B. Trimbos,Obstet. Gynecol. 64 , 274–280 (1984).
    4. C. C. Adams,The Knot Book: An Elementary Introduction to the
    Mathematical Theory of Knots(American Mathematical Society,
    2004).
    5. B. Audoly, N. Clauvelin, S. Neukirch,Phys. Rev. Lett. 99 , 164301
    (2007).
    6. M. K. Jawed, P. Dieleman, B. Audoly, P. M. Reis,Phys. Rev. Lett.
    115 , 118302 (2015).
    7. B. F. Bayman,Am. J. Phys. 45 , 185–190 (1977).
    8. P. B. Warren, R. C. Ball, R. E. Goldstein,Phys. Rev. Lett. 120 ,
    158001 (2018).
    9. J. A. Calvo, K. C. Millett, E. J. Rawdon, Eds.,Physical Knots:
    Knotting,Linking,and Folding Geometric Objects in R^3 , vol. 304
    ofContemporary Mathematics(American Mathematical
    Society, 2001).
    10. W. Thomson II,Philos. Mag. 34 ,15–24 (1867).
    11. H. K. Moffatt, R. L. Ricca,“Helicity and the Călugăreanu
    invariant”inKnots And Applications, L. H. Kauffman, Ed.
    (World Scientific, 1995), pp. 251–269.
    12. D. Kleckner, W. T. Irvine,Nat. Phys. 9 , 253–258 (2013).
    13. M. W. Scheeler, W. M. van Rees, H. Kedia, D. Kleckner,
    W. T. M. Irvine,Science 357 , 487–491 (2017).
    14. S. Kuei, A. M. Słowicka, M. L. Ekiel-Jeżewska, E. Wajnryb,
    H. A. Stone,New J. Phys. 17 , 053009 (2015).
    15. U. Tkalec, M. Ravnik, S.Čopar, S.Žumer, I. Muševič,
    Science 333 ,62–65 (2011).
    16. J. B. Taylor,Phys. Rev. Lett. 33 , 1139–1141 (1974).
    17. D. Kleckner, L. H. Kauffman, W. T. Irvine,Nat. Phys. 12 ,
    650 – 655 (2016).
    18. R. Stolzet al.,Sci. Rep. 7 , 12420 (2017).
    19. A. R. Klotz, B. W. Soh, P. S. Doyle,Phys. Rev. Lett. 120 , 188003
    (2018).
    20. P. Virnau, L. A. Mirny, M. Kardar,PLOS Comput. Biol. 2 , e122
    (2006).
    21. R. C. Lua, A. Y. Grosberg,PLOS Comput. Biol. 2 , e45
    (2006).
    22. D. Goundarouliset al.,Polymers 9 , 444 (2017).
    23. R.C. Ball, M. Doi, S. F. Edwards, M. Warner,Polymer 22 ,
    1010 – 1018 (1981).
    24. C. Baek, A. O. Sageman-Furnas, M. K. Jawed, P. M. Reis,
    Proc. Natl. Acad. Sci. U.S.A. 115 ,75–80 (2018).
    25. R. D. Kamien,Eur. Phys. J. B 1 ,1–4 (1998).
    26. J. R. Goldman, L. H. Kauffman,Adv. Appl. Math. 18 , 300– 332
    (1997).
    27. M. Kolleet al.,Adv. Mater. 25 , 2239–2245 (2013).


28.Materialsandmethodsareavailableassupplementary
materials.


  1. M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, E. Grinspun,
    ACM Trans. Graph. 27 , 63 (2008).

  2. J. H. Maddocks, J. B. Keller,SIAM J. Appl. Math. 47 , 1185– 1200
    (1987).

  3. V. P. Patil, Knot simulation code. Zenodo (2019);
    https://doi.org/10.5281/zenodo.3528928.


ACKNOWLEDGMENTS
J.D. thanks the Isaac Newton Institute for Mathematical Sciences for
support and hospitality during the program“The Mathematical Design
of New Materials”(supported by EPSRC grant EP/R014604/1) when
work on this paper was undertaken. We thank J. Takagi for producing
Fig. 4A.Funding:This work was supported by an Alfred P. Sloan
Research Fellowship (J.D.), a Complex Systems Scholar Award from
the James S. McDonnell Foundation (J.D.), the Brigham and
Women’s Hospital through a Stepping Strong Innovator Award
(J.D.S. and M.K.), and the National Science Foundation through the
“Designing Materials to Revolutionize and Engineer our Future”
program (DMREF-1922321 to J.D.S. and M.K.).Author contributions:
V.P.P. and J.D. developed theory. V.P.P. performed simulations,
for which J.D.S. and M.K. provided data and code for converting strain
into perceived knot color. J.D.S. and M.K. designed color-changing
fibers and conceived optomechanical experiments. J.D.S. conducted
optomechanical experiments and provided the description of the
experiments in the supplementary materials. J.D.S. and V.P.P.
performed in-lab prisoner’s escape experiments. V.P.P. and J.D. wrote
the first draft of the paper. All authors discussed and revised the
manuscript.Competing interests:The authors declare no competing
interests.Data and materials availability:The code used for
numerical simulations is available on Zenodo ( 31 ). All data are available
in the main text or the supplementary materials.

SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/367/6473/71/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S6
Tables S1 and S2
Movies S1 and S2
References ( 32 – 33 )
5 August 2019; accepted 15 November 2019
10.1126/science.aaz0135

Patilet al.,Science 367 ,71–75 (2020) 3 January 2020 5of5


RESEARCH | REPORT

Free download pdf