SOLUTION:
EXAMPLE 4
SOLUTION:
EXAMPLE 5
If s(t) = (t^2 + 1)(1 − t)^2 , find s ′(t).
SOLUTION:
EXAMPLE 6
If f (t) = e^2 t sin 3t, find f ′(0).
SOLUTION:
Then, f ′(0) = 1(3 · 1 + 2 · 0) = 3.
EXAMPLE 7
SOLUTION:
Note that neither f (v) nor f ′(v) exists where the denominator equals zero, namely, where 1 − 2v^2
= 0 or where v equals
EXAMPLE 8
If x ≠ 0, find f ′(x).
SOLUTION:
EXAMPLE 9
If y = tan (2x^2 + 1), find y ′.
SOLUTION: y ′ = 4x sec^2 (2x^2 + 1).
EXAMPLE 10