358 | Nature | Vol 577 | 16 January 2020
Article
diamagnetic material), and also that in some systems it is possible for
one of the eutectic phases to be selectively etched and replaced with
a different material^13.
Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-019-1893-9.
- Braun, P. V., Osenar, P. & Stupp, S. I. Semiconducting superlattices templated by
molecular assemblies. Nature 380 , 325–328 (1996). - Tavakkoli, K. G. A. et al. Templating three-dimensional self-assembled structures in bilayer
block copolymer films. Science 336 , 1294–1298 (2012). - Wu, Y. et al. Composite mesostructures by nano-confinement. Nat. Mater. 3 , 816–822
(2004). - Tavakkoli, K. G. A. et al. Rectangular symmetry morphologies in a topographically
templated block copolymer. Adv. Mater. 24 , 4249–4254 (2012). - Urgel, J. I. et al. Quasicrystallinity expressed in two-dimensional coordination networks.
Nat. Chem. 8 , 657–662 (2016). - Grünbaum, B. & Shephard, G. C. Tilings by regular polygons. Math. Mag. 50 , 227–247
(1977). - Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13 , 139–150 (2014).
- Wang, R. F. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale
ferromagnetic islands. Nature 439 , 303–306 (2006); addendum 446, 102 (2007). - Ladak, S., Read, D. E., Perkins, G. K., Cohen, L. F. & Branford, W. R. Direct observation of
magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 6 , 359–363 (2010). - Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334 , 962–965 (2011).
- Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional
ceramic nanolattices. Science 345 , 1322–1326 (2014). - Pawlak, D. A. et al. How far are we from making metamaterials by self-organization? The
microstructure of highly anisotropic particles with an SRR-like geometry. Adv. Funct.
Mater. 20 , 1116–1124 (2010). - Acosta, M. F., Rodrigo, S. G., Martín-Moreno, L., Pecharromán, C. & Merino, R. I. Micropillar
templates for dielectric filled metal arrays and flexible metamaterials. Adv. Opt. Mater. 5 ,
1600670 (2017). - Sadecka, K. et al. When eutectics meet plasmonics: nanoplasmonic, volumetric, self-
organized, silver-based eutectic. Adv. Opt. Mater. 3 , 381–389 (2015).
15. Bei, H., Pharr, G. & George, E. A review of directionally solidified intermetallic composites
for high-temperature structural applications. J. Mater. Sci. 39 , 3975–3984 (2004).
16. Wysmulek, K. et al. A SrTiO 3 -TiO 2 eutectic composite as a stable photoanode material for
photoelectrochemical hydrogen production. Appl. Catal. B 206 , 538–546 (2017).
17. Jackson, K. & Hunt, J. Lamellar and rod eutectic growth. Trans. Metall. Soc. AIME 236 ,
1129–1142 (1966).
18. Himemiya, T. & Umeda, T. Three-phase planar eutectic growth models for a ternary
eutectic system. Mater. Trans. JIM 40 , 665–674 (1999).
19. Choudhury, A., Plapp, M. & Nestler, B. Theoretical and numerical study of lamellar
eutectic three-phase growth in ternary alloys. Phys. Rev. E 83 , 051608 (2011).
20. Dennstedt, A. & Ratke, L. Microstructures of directionally solidified Al–Ag–Cu ternary
eutectics. Trans. Indian Inst. Met. 65 , 777–782 (2012).
21. Akamatsu, S. & Plapp, M. Eutectic and peritectic solidification patterns. Curr. Opin. Solid
State Mater. Sci. 20 , 46–54 (2016).
22. Boley, J. W. et al. High-operating-temperature direct ink writing of mesoscale eutectic
architectures. Adv. Mater. 29 , 1604778 (2017).
23. Choi, J. et al. Processing-dependent microstructure of AgCl–CsAgCl 2 eutectic photonic
crystals. Adv. Opt. Mater. 6 , 1701316 (2018).
24. Darling, S. B. Directing the self-assembly of block copolymers. Prog. Polym. Sci. 32 ,
1152–1204 (2007).
25. Ouk Kim, S. et al. Epitaxial self-assembly of block copolymers on lithographically defined
nanopatterned substrates. Nature 424 , 411–414 (2003).
26. Shin, D. O. et al. Multicomponent nanopatterns by directed block copolymer self-
assembly. ACS Nano 7 , 8899–8907 (2013).
27. Choi, Y. J. et al. Hierarchical directed self-assembly of diblock copolymers for modified
pattern symmetry. Adv. Funct. Mater. 26 , 6462–6470 (2016).
28. Jung, H. et al. Hierarchical multi-level block copolymer patterns by multiple self-
assembly. Nanoscale 11 , 8433–8441 (2019).
29. Ding, Y. et al. Emergent symmetries in block copolymer epitaxy. Nat. Commun. 10 , 2974
(2019).
30. Kulkarni, A. A. et al. Template-directed solidification of eutectic optical materials. Adv.
Opt. Mater. 6 , 1800071 (2018).
31. Kim, J. et al. Template-directed directionally solidified 3D mesostructured AgCl-KCl
eutectic photonic crystals. Adv. Mater. 27 , 4551–4559 (2015).
32. Kulkarni, A. A., Kohanek, J., Hanson, E., Thornton, K. & Braun, P. V. Control of lamellar
eutectic orientation via template-directed solidification. Acta Mater. 166 , 715–722 (2019).
33. Yan, Z. et al. Three-dimensional mesostructures as high-temperature growth templates,
electronic cellular scaffolds, and self-propelled microrobots. Proc. Natl Acad. Sci. USA
114 , E9455–E9464 (2017).
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2020