Nature - USA (2020-01-23)

(Antfer) #1

542 | Nature | Vol 577 | 23 January 2020


Article


To compare cynomolgus and human EPI development, we analysed
scRNA-seq from monkey 6–17-d.p.f. EPIs^39. Principal component analy-
sis (PCA) revealed that cynomolgus and human cells separated along the
PC1, representing a major species difference (Extended Data Fig. 10a).
We identified genes with significantly positive or negative PC1 scores for
cynomolgus and human genes (Extended Data Fig. 10b, Supplementary
Table 7). Along the PC2 and PC3 axes, cynomolgus and human EPIs
cells were plotted to reflect their similar developmental transitions
and conserved signalling pathways and Gene Ontology (GO) terms
(Extended Data Fig. 10a, c, Supplementary Table 7). To examine species
differences, we compared the dynamics of naive genes and signalling
pathways over EPST in human and reported monkey data^39. In con-
trast to human EPST, TBX3 and SOX15 gradually decreased, and UTF1
and NR0B1 were absent during monkey EPST^39 (Fig. 4c, Extended Data
Fig. 10d, e). Pathway analysis for upregulated genes during the EPST
revealed a similar enrichment trend for NOTCH, BMP and FGF signal-
ling pathways in humans and monkeys^39 (Extended Data Fig. 10f–h).
However, LEFTY1, LEFTY2 and NODAL in BMP signalling displayed dif-
ferent patterns between human and monkey EPST (Extended Data
Fig. 10f ). Together, human and monkey EPIs had unique phenotypes
and similarities during development.


Discussion


Here, we report a 3D-culture system that successfully cultured human
blastocyst growing to the PSA stage. These 3D embryos can recapitu-
late almost all key 3D architectures and developmental landmarks of
in vivo pre-gastrulation embryos. By contrast, many 3D structures
and developmental landmarks—such as AME–EPI separation, base-
ment membrane, SYS, anterior visceral endoderm, anterior–posterior
polarity initiation and PSA—were not found using in vitro implantation
platforms of 2D-cultured embryos^1 ,^2 and using human pluripotent
stem cells that model early developmental embryonic events^6 –^8. Our
3D-cultured embryos recapitulated the timing and outcome of lineage
segregation and development, which more authentically mimicked
early human embryonic development in vivo (Fig. 4d).
Because human embryogenesis is not well understood, we estab-
lished a platform to delineate EPIs, AMEs, PrEs and TrBs. We revealed
the unique characteristics of AME as the first differentiated cell group
emerging from an expanding EPI population^8. We uncovered specific
pathways and transcription factors for TrB subtype separation and
functional differences between subtypes and between pre-gastrulation
TrBs and fetal TrBs^32. Unlike mice, human EPI after implantation main-
tains its transcriptional properties for a steady and prolonged period
while acquiring properties for neuron differentiation and vasculature
development. Overall, we reveal the molecular and morphogenetic
developmental landscape of pre-gastrulation human embryos. These
data provide crucial insights into the pluripotency of human pluripo-
tent stem cells and uncover stem-cell self-renewal and differentiation
processes, and will inform future strategies to improve in vitro ferti-
lization success rates.


Online content


Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-019-1875-y.



  1. Shahbazi, M. N. et al. Self-organization of the human embryo in the absence of maternal
    tissues. Nat. Cell Biol. 18 , 700–708 (2016).

  2. Deglincerti, A. et al. Self-organization of the in vitro attached human embryo. Nature 533 ,
    251–254 (2016).

  3. Rossant, J. Human embryology: implantation barrier overcome. Nature 533 , 182–183 (2016).
    4. Rossant, J. & Tam, P. P. L. New insights into early human development: lessons for stem
    cell derivation and differentiation. Cell Stem Cell 20 , 18–28 (2017).
    5. Wamaitha, S. E. & Niakan, K. K. in Current Topics in Developmental Biology Vol. 128 (eds
    Plusa, B. & Hadjantonakis, A.-K.) 295–338 (Academic, 2018).
    6. Shao, Y. et al. A pluripotent stem cell-based model for post-implantation human amniotic
    sac development. Nat. Commun. 8 , 208 (2017).
    7. Martyn, I., Kanno, T. Y., Ruzo, A., Siggia, E. D. & Brivanlou, A. H. Self-organization of a
    human organizer by combined Wnt and Nodal signalling. Nature 558 , 132–135 (2018).
    8. Shao, Y. et al. Self-organized amniogenesis by human pluripotent stem cells in a
    biomimetic implantation-like niche. Nat. Mater. 16 , 419–425 (2017).
    9. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic
    stem cells. Nat. Biotechnol. 25 , 681–686 (2007).
    10. Dobreva, M. P., Pereira, P. N., Deprest, J. & Zwijsen, A. On the origin of amniotic stem cells:
    of mice and men. Int. J. Dev. Biol. 54 , 761–777 (2010).
    11. Luckett, W. P. Origin and differentiation of the yolk sac and extraembryonic
    mesoderm in presomite human and rhesus monkey embryos. Am. J. Anat. 152 , 59–97
    (1978).
    12. Shahbazi, M. N. et al. Pluripotent state transitions coordinate morphogenesis in mouse
    and human embryos. Nature 552 , 239–243 (2017).
    13. Enders, A. C., Schlafke, S. & Hendrickx, A. G. Differentiation of the embryonic disc,
    amnion, and yolk sac in the rhesus monkey. Am. J. Anat. 177 , 161–185 (1986).
    14. Gardner, R. L. Investigation of cell lineage and differentiation in the extraembryonic
    endoderm of the mouse embryo. J. Embryol. Exp. Morphol. 68 , 175–198 (1982).
    15. Stirparo, G. G. et al. Integrated analysis of single-cell embryo data yields a unified
    transcriptome signature for the human pre-implantation epiblast. Development 145 ,
    dev158501 (2018).
    16. Blakeley, P. et al. Defining the three cell lineages of the human blastocyst by single-cell
    RNA-seq. Development 142 , 3151–3165 (2015).
    17. Yan, L. et al. Single-cell RNA-seq profiling of human preimplantation embryos and
    embryonic stem cells. Mol. Biol. 20 , 1131–1139 (2013).
    18. Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in
    human preimplantation embryos. Cell 165 , 1012–1026 (2016).
    19. Boroviak, T. & Nichols, J. Primate embryogenesis predicts the hallmarks of human naïve
    pluripotency. Development 144 , 175–186 (2017).
    20. Halbleib, J. M. & Nelson, W. J. Cadherins in development: cell adhesion, sorting, and
    tissue morphogenesis. Genes Dev. 20 , 3199–3214 (2006).
    21. Bedzhov, I. & Zernicka-Goetz, M. Self-organizing properties of mouse pluripotent cells
    initiate morphogenesis upon implantation. Cell 156 , 1032–1044 (2014).
    22. Sozen, B. et al. Self-assembly of embryonic and two extra-embryonic stem cell types into
    gastrulating embryo-like structures. Nat. Cell Biol. 20 , 979–989 (2018).
    23. Sasaki, K. et al. The germ cell fate of cynomolgus monkeys is specified in the nascent
    amnion. Dev. Cell 39 , 169–185 (2016).
    24. de Ikonicoff, L. K. & Cedard, L. Localization of human chorionic gonadotropic and
    somatomammotropic hormones by the peroxidase immunohistoenzymologic method in
    villi and amniotic epithelium of human placentas (from six weeks to term). Am. J. Obstet.
    Gynecol. 116 , 1124–1132 (1973).
    25. Morgani, S. M., Metzger, J. J., Nichols, J., Siggia, E. D. & Hadjantonakis, A. K. Micropattern
    differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell
    fate patterning. eLife 7 , e32839 (2018).
    26. Tsakiridis, A. et al. Distinct Wnt-driven primitive streak-like populations reflect in vivo
    lineage precursors. Development 141 , 1209–1221 (2014).
    27. Sun, L. T. et al. Nanog co-regulated by Nodal/Smad2 and Oct4 is required for
    pluripotency in developing mouse epiblast. Dev. Biol. 392 , 182–192 (2014).
    28. Huelsken, J. et al. Requirement for β-catenin in anterior-posterior axis formation in mice.
    J. Cell Biol. 148 , 567–578 (2000).
    29. Camus, A., Perea-Gomez, A., Moreau, A. & Collignon, J. Absence of Nodal signaling
    promotes precocious neural differentiation in the mouse embryo. Dev. Biol. 295 ,
    743–755 (2006).
    30. Voiculescu, O., Bertocchini, F., Wolpert, L., Keller, R.E., Stern, C.D. The amniote primitive
    streak is defined by epithelial cell intercalation before gastrulation. Nature 449 ,
    1049–1052 (2007).
    31. Fong, G.-H., Klingensmith, J., Wood, C. R., Rossant, J. & Breitman, M. L. Regulation of flt-1
    expression during mouse embryogenesis suggests a role in the establishment of vascular
    endothelium. Dev. Dyn. 207 , 1–10 (1996).
    32. Liu, Y. et al. Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns
    of differentiation in the human placenta. Cell Res. 28 , 819–832 (2018).
    33. Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22 , 50–63.e56
    (2018).
    34. Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal–fetal interface in
    humans. Nature 563 , 347–353 (2018).
    35. Smith, A. Formative pluripotency: the executive phase in a developmental continuum.
    Development 144 , 365–373 (2017).
    36. Hackett, J. A. & Surani, M. A. Regulatory principles of pluripotency: from the ground state
    up. Cell Stem Cell 15 , 416–430 (2014).
    37. Som, A. et al. The PluriNetWork: an electronic representation of the network underlying
    pluripotency in mouse, and its applications. PLoS ONE  5 , e15165 (2010).
    38. Liu, D. et al. Single-cell RNA-sequencing reveals the existence of naive and primed
    pluripotency in pre-implantation rhesus monkey embryos. Genome Res. 28 , 1481–1493
    (2018).
    39. Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys
    and humans. Nature 537 , 57–62 (2016).
    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
    published maps and institutional affiliations.
    © The Author(s), under exclusive licence to Springer Nature Limited 2019

Free download pdf