Nature | Vol 577 | 23 January 2020 | 571common ground for the analysis of EMTs in developmental and regen-
erative processes and paves the way for a better understanding of the
role of TGF-β in the pathogenesis of organ fibrosis and cancer.
Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-019-1897-5.
- Arnold, S. J. & Robertson, E. J. Making a commitment: cell lineage allocation and axis
 patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10 , 91–103 (2009).
- Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial–
 mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20 , 69–84
 (2019).
- Ferretti, E. & Hadjantonakis, A. K. Mesoderm specification and diversification: from single
 cells to emergent tissues. Curr. Opin. Cell Biol. 61 , 110–116 (2019).
- Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166 , 21–45 (2016).
- Batlle, E. et al. The transcription factor snail is a repressor of E-cadherin gene expression
 in epithelial tumour cells. Nat. Cell Biol. 2 , 84–89 (2000).
- Cano, A. et al. The transcription factor snail controls epithelial–mesenchymal transitions
 by repressing E-cadherin expression. Nat. Cell Biol. 2 , 76–83 (2000).
- Brabletz, S. & Brabletz, T. The ZEB/miR-200 feedback loop—a motor of cellular plasticity
 in development and cancer? EMBO Rep. 11 , 670–677 (2010).
- De Craene, B. & Berx, G. Regulatory networks defining EMT during cancer initiation and
 progression. Nat. Rev. Cancer 13 , 97–110 (2013).
- David, C. J. & Massagué, J. Contextual determinants of TGFβ action in development,
 immunity and cancer. Nat. Rev. Mol. Cell Biol. 19 , 419–435 (2018).
- Heldin, C. H., Vanlandewijck, M. & Moustakas, A. Regulation of EMT by TGFβ in cancer.
 FEBS Lett. 586 , 1959–1970 (2012).
- Meng, X. M., Nikolic-Paterson, D. J. & Lan, H. Y. TGF-β: the master regulator of fibrosis.
 Nat. Rev. Nephrol. 12 , 325–338 (2016).
- David, C. J. et al. TGF-β tumor suppression through a lethal EMT. Cell 164 , 1015–1030
 (2016).
- Horiguchi, K. et al. Role of Ras signaling in the induction of Snail by transforming growth
 factor-β. J. Biol. Chem. 284 , 245–253 (2009).
- Janda, E. et al. Ras and TGFβ cooperatively regulate epithelial cell plasticity and
 metastasis: dissection of Ras signaling pathways. J. Cell Biol. 156 , 299–314 (2002).
- Meno, C. et al. Mouse Lefty2 and zebrafish antivin are feedback inhibitors of Nodal
 signaling during vertebrate gastrulation. Mol. Cell 4 , 287–298 (1999).
- Oft, M., Akhurst, R. J. & Balmain, A. Metastasis is driven by sequential elevation of H-ras
 and Smad2 levels. Nat. Cell Biol. 4 , 487–494 (2002).
- Sun, X., Meyers, E. N., Lewandoski, M. & Martin, G. R. Targeted disruption of Fgf8 causes
 failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13 , 1834–1846
 (1999).
- Yamaguchi, T. P., Harpal, K., Henkemeyer, M. & Rossant, J. fgfr-1 is required for embryonic
 growth and mesodermal patterning during mouse gastrulation. Genes Dev. 8 ,
 3032–3044 (1994).
- Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L. & Kuehn, M. R. Nodal is a novel TGF-β-like gene
 expressed in the mouse node during gastrulation. Nature 361 , 543–547 (1993).
- Cancer Genome Atlas Research Network. Integrated genomic characterization of
 pancreatic ductal adenocarcinoma. Cancer Cell 32 , 185–203 (2017).
- Thiagalingam, A. et al. RREB-1, a novel zinc finger protein, is involved in the differentiation
 response to Ras in human medullary thyroid carcinomas. Mol. Cell. Biol. 16 , 5335–5345
 (1996).
- DaCosta Byfield, S., Major, C., Laping, N. J. & Roberts, A. B. SB-505124 is a selective
 inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7.
 Mol. Pharmacol. 65 , 744–752 (2004).
- Porsch, H. et al. Efficient TGFβ-induced epithelial–mesenchymal transition depends on
 hyaluronan synthase HAS2. Oncogene 32 , 4355–4365 (2013).
- Martin-Malpartida, P. et al. Structural basis for genome wide recognition of 5-bp GC
 motifs by SMAD transcription factors. Nat. Commun. 8 , 2070 (2017).
 25. Costello, L. C., Zou, J., Desouki, M. M. & Franklin, R. B. Evidence for changes in RREB-1,
 ZIP3, and Zinc in the early development of pancreatic adenocarcinoma. J. Gastrointest.
 Cancer 43 , 570–578 (2012).
 26. Kent, O. A., Fox-Talbot, K. & Halushka, M. K. RREB1 repressed miR-143/145 modulates KRAS
 signaling through downregulation of multiple targets. Oncogene 32 , 2576–2585 (2013).
 27. Yamane, T. et al. Transcriptional activation of the cholecystokinin gene by DJ-1 through
 interaction of DJ-1 with RREB1 and the effect of DJ-1 on the cholecystokinin level in mice.
 PLoS ONE 8 , e78374 (2013).
 28. Kent, O. A. et al. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-
 promoting feed-forward pathway. Genes Dev. 24 , 2754–2759 (2010).
 29. Winslow, M. M. et al. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature
 473 , 101–104 (2011).
 30. Kasai, H., Allen, J. T., Mason, R. M., Kamimura, T. & Zhang, Z. TGF-β1 induces human
 alveolar epithelial to mesenchymal cell transition (EMT). Respir. Res. 6 , 56 (2005).
 31. Schafer, S. et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 552 ,
 110–115 (2017).
 32. Toda, N., Mukoyama, M., Yanagita, M. & Yokoi, H. CTGF in kidney fibrosis and
 glomerulonephritis. Inflamm. Regen. 38 , 14 (2018).
 33. Königshoff, M. et al. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in
 mice and is upregulated in humans with idiopathic pulmonary fibrosis. J. Clin. Invest. 119 ,
 772–787 (2009).
 34. Yoshida, S. et al. Extrahepatic platelet-derived growth factor-β, delivered by platelets,
 promotes activation of hepatic stellate cells and biliary fibrosis in mice. Gastroenterology
 147 , 1378–1392 (2014).
 35. Dave, N. et al. Functional cooperation between Snail1 and twist in the regulation of ZEB1
 expression during epithelial to mesenchymal transition. J. Biol. Chem. 286 , 12024–12032
 (2011).
 36. Ye, X. et al. Distinct EMT programs control normal mammary stem cells and tumour-
 initiating cells. Nature 525 , 256–260 (2015).
 37. Scheel, C. et al. Paracrine and autocrine signals induce and maintain mesenchymal and
 stem cell states in the breast. Cell 145 , 926–940 (2011).
 38. Miettinen, P. J., Ebner, R., Lopez, A. R. & Derynck, R. TGF-β induced transdifferentiation of
 mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell
 Biol. 127 , 2021–2036 (1994).
 39. Shirakihara, T., Saitoh, M. & Miyazono, K. Differential regulation of epithelial and
 mesenchymal markers by δEF1 proteins in epithelial mesenchymal transition induced by
 TGF-β. Mol. Biol. Cell 18 , 3533–3544 (2007).
 40. Xie, L. et al. Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro.
 Neoplasia 6 , 603–610 (2004).
 41. Peng, G. et al. Spatial transcriptome for the molecular annotation of lineage fates and cell
 identity in mid-gastrula mouse embryo. Dev. Cell 36 , 681–697 (2016).
 42. Wang, Q. et al. The p53 family coordinates Wnt and Nodal inputs in mesendodermal
 differentiation of embryonic stem cells. Cell Stem Cell 20 , 70–86 (2017).
 43. Peiró, S. et al. Snail1 transcriptional repressor binds to its own promoter and controls its
 expression. Nucleic Acids Res. 34 , 2077–2084 (2006).
 44. Lee, J. D., Silva-Gagliardi, N. F., Tepass, U., McGlade, C. J. & Anderson, K. V. The FERM
 protein Epb4.1l5 is required for organization of the neural plate and for the epithelial–
 mesenchymal transition at the primitive streak of the mouse embryo. Development 134 ,
 2007–2016 (2007).
 45. Zohn, I. E. et al. p38 and a p38-interacting protein are critical for downregulation of
 E-cadherin during mouse gastrulation. Cell 125 , 957–969 (2006).
 46. Ciruna, B. & Rossant, J. FGF signaling regulates mesoderm cell fate specification and
 morphogenetic movement at the primitive streak. Dev. Cell 1 , 37–49 (2001).
 47. Grande, M. T. et al. Snail1-induced partial epithelial-to-mesenchymal transition drives
 renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21 ,
 989–997 (2015).
 48. Lovisa, S. et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and
 parenchymal damage in renal fibrosis. Nat. Med. 21 , 998–1009 (2015).
 49. Yoon, S. J., Wills, A. E., Chuong, E., Gupta, R. & Baker, J. C. HEB and E2A function as
 SMAD/FOXH1 cofactors. Genes Dev. 25 , 1654–1661 (2011).
 50. Thuault, S. et al. HMGA2 and Smads co-regulate SNAIL1 expression during induction of
 epithelial-to-mesenchymal transition. J. Biol. Chem. 283 , 33437–33446 (2008).
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2020