Nature | Vol 577 | 23 January 2020 | 485additional regrowth term in equation ( 3 )) to sustain the SOC state on
even longer timescales^47. It should also be possible to investigate other
observables beyond the mean-field level, including spatio-temporal
correlations in the active and remaining densities. This would make
it possible to determine multiple critical exponents and scaling rela-
tions, helping to answer long-standing questions about the universal or
non-universal aspects of SOC and its relation to other non-equilibrium
universality classes. Additionally, further experiments could explore
the interface between driven–dissipative and isolated quantum systems
governed by competing classical and quantum dynamical rules^48 –^50 ,
ultimately leading to a more complete and quantitative understanding
of non-equilibrium universality.
Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-019-1908-6.
- Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality: an explanation of the 1/f noise.
 Phys. Rev. Lett. 59 , 381–384 (1987).
- Sornette, A. & Sornette, D. Self-organized criticality and earthquakes. EPL 9 , 197–202 (1989).
- Rhodes, C. J. & Anderson, R. M. Power laws governing epidemics in isolated populations.
 Nature 381 , 600–602 (1996).
- Malamud, B. D., Morein, G. & Turcotte, D. L. Forest fires: an example of self-organized
 critical behavior. Science 281 , 1840–1842 (1998).
- de Arcangelis, L., Godano, C., Lippiello, E. & Nicodemi, M. Universality in solar flare and
 earthquake occurrence. Phys. Rev. Lett. 96 , 051102 (2006).
- Klaus, A., Yu, S. & Plenz, D. Statistical analyses support power law distributions found in
 neuronal avalanches. PLoS ONE 6 , e19779 (2011).
- Hesse, J. & Gross, T. Self-organized criticality as a fundamental property of neural
 systems. Front. Syst. Neurosci. 8 , 166 (2014).
- Gleeson, J. P., Ward, J. A., O’Sullivan, K. P. & Lee, W. T. Competition-induced criticality in a
 model of meme popularity. Phys. Rev. Lett. 112 , 048701 (2014).
- Shew, W. L. et al. Adaptation to sensory input tunes visual cortex to criticality. Nat. Phys.
 11 , 659–663 (2015).
- Drossel, B. & Schwabl, F. Self-organized critical forest-fire model. Phys. Rev. Lett. 69 ,
 1629–1632 (1992).
- Dickman, R. Numerical study of a field theory for directed percolation. Phys. Rev. E 50 ,
 4404–4409 (1994).
- Muñoz, M. A., Grinstein, G., Dickman, R. & Livi, R. Critical behavior of systems with many
 absorbing states. Phys. Rev. Lett. 76 , 451–454 (1996).
 13. Vespignani, A. & Zapperi, S. Order parameter and scaling fields in self-organized
 criticality. Phys. Rev. Lett. 78 , 4793–4796 (1997).
 14. Dornic, I., Chaté, H. & Muñoz, M. A. Integration of Langevin equations with multiplicative
 noise and the viability of field theories for absorbing phase transitions. Phys. Rev. Lett. 94 ,
 100601 (2005).
 15. Henkel, M., Hinrichsen, H. & Lübeck, S. Non-equilibrium Phase Transitions: Absorbing
 Phase Transitions Vol. 1 (Springer, 2008).
 16. Field, S., Witt, J., Nori, F. & Ling, X. Superconducting vortex avalanches. Phys. Rev. Lett. 74 ,
 1206–1209 (1995).
 17. Frette, V. et al. Avalanche dynamics in a pile of rice. Nature 379 , 49 (1996).
 18. Dickman, R., Muñoz, M. A., Vespignani, A. & Zapperi, S. Paths to self-organized criticality.
 Braz. J. Phys. 30 , 27–41 (2000).
 19. Altshuler, E. & Johansen, T. H. Experiments in vortex avalanches. Rev. Mod. Phys. 76 ,
 471–487 (2004).
 20. Bonachela, J. A. & Muñoz, M. A. Self-organization without conservation: true or just
 apparent scale-invariance? J. Stat. Mech. 2009 , P09009 (2009).
 21. Watkins, N. W., Pruessner, G., Chapman, S. C., Crosby, N. B. & Jensen, H. J. 25 years of self-
 organized criticality: concepts and controversies. Space Sci. Rev. 198 , 3–44 (2016).
 22. Forster, D. Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions
 (Taylor & Francis, 1990).
 23. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-
 dimensional systems. J. Phys. C 6 , 1181 (1973).
 24. Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov (Cambridge Univ. Press, 1995).
 25. Berges, J., Rothkopf, A. & Schmidt, J. Nonthermal fixed points: effective weak coupling
 for strongly correlated systems far from equilibrium. Phys. Rev. Lett. 101 , 041603
 (2008).
 26. Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B. & Dalibard, J. Berezinskii–Kosterlitz–
 Thouless crossover in a trapped atomic gas. Nature 441 , 1118–1121 (2006).
 27. Murthy, P. A. et al. Observation of the Berezinskii–Kosterlitz–Thouless phase transition in
 an ultracold Fermi gas. Phys. Rev. Lett. 115 , 010401 (2015).
 28. Tsatsos, M. C. et al. Quantum turbulence in trapped atomic Bose–Einstein condensates.
 Phys. Rep. 622 , 1–52 (2016).
 29. Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Emergence of a turbulent cascade in
 a quantum gas. Nature 539 , 72–75 (2016).
 30. Prüfer, M. et al. Observation of universal quantum dynamics in a spinor Bose gas far from
 equilibrium. Nature 563 , 217–220 (2018).
 31. Erne, S., Bücker, R., Gasenzer, T., Berges, J. & Schmiedmayer, J. Observation of universal
 dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature 563 ,
 225–229 (2018).
 32. Inouye, S. et al. Superradiant Rayleigh scattering from a Bose–Einstein condensate.
 Science 285 , 571–574 (1999).
 33. Clark, L. W., Gaj, A., Feng, L. & Chin, C. Collective emission of matter-wave jets from
 driven Bose–Einstein condensates. Nature 551 , 356 (2017).
 34. Ho, T.-L. Universal thermodynamics of degenerate quantum gases in the unitarity limit.
 Phys. Rev. Lett. 92 , 090402 (2004).
 35. Lesanovsky, I. & Garrahan, J. P. Kinetic constraints, hierarchical relaxation, and onset of
 glassiness in strongly interacting and dissipative Rydberg gases. Phys. Rev. Lett. 111 ,
 215305 (2013).
 36. Carr, C., Ritter, R., Wade, C. G., Adams, C. S. & Weatherill, K. J. Nonequilibrium phase
 transition in a dilute Rydberg ensemble. Phys. Rev. Lett. 111 , 113901 (2013).
 37. Schempp, H. et al. Full counting statistics of laser excited Rydberg aggregates in a one-
 dimensional geometry. Phys. Rev. Lett. 112 , 013002 (2014).
abcRydberg number1,00050001,5000.000.020.040.06n^ t(μm–3)Time, t (ms) Avalanche size, sProbability00100 2 304 101 10210 –510 –410 –310 –2Fig. 4 | Observation of power-law distributed excitation avalanches.
a, Evolution of the remaining density for the 66p3/2 state (solid line).
b, Simultaneously measured Rydberg atom number (active component)
integrated over the whole atom cloud showing large f luctuations of the active
density for t ≳ 10 ms (solid line). Each of the 200 plotted values corresponds to a
new realization of the experiment. The dashed lines in a, b are mean-field
predictions, where the effective volume of the atom cloud in b is adjusted for
optimal agreement. c, Probability distribution for the instantaneous number
of Rydberg excitations (avalanche size) for 3,630 experimental runs. To
determine the power-law exponent we truncate the binned data (by eye, to the
region where the log–log slope is approximately constant), in a finite window
indicated by the solid red line and apply a maximum-likelihood estimation. The
power-law exponent α = −1.37(2) is depicted by the black, straight dashed line.
The grey data correspond to a control measurement for resonant excitation
with a short duration laser pulse, which does not exhibit a power-law
distribution. The dashed grey line is a fit to a stretched Poissonian distribution.