Nature - USA (2020-02-13)

(Antfer) #1
Nature | Vol 578 | 13 February 2020 | 289

that regulate neuronal excitability (Kcnj12) as a class of AHR signalling
targets provides a plausible molecular link between the dynamic micro-
environment of the gut lumen and the functional output of intestinal
neural circuits. Although the full spectrum and detailed molecular
mechanisms that act downstream of neuronal AHR remain to be charac-
terized, our experiments suggest that components of this pathway are
implicated in the pathogenesis of intestinal motility disorders. A recent
study has suggested a role for AHR in the biology of stool frequency,
changes of which are one of the hallmarks of irritable bowel syndrome^28.
Therefore, pharmacological or dietary interventions that modulate
AHR activity in the cellular circuitry that controls intestinal peristalsis
offer a realistic strategy for the management of conditions associated
with gut dysmotility. In addition to the role of AHR in neurogenic motil-
ity, AHR-dependent transcriptional programs are also central to the
barrier function of intestinal epithelial cells and the mucosal immune
system^25 ,^29. We suggest that, by transmitting environmental triggers
within diverse cell types, AHR integrates the activity of functionally
distinct intestinal tissues towards gut homeostasis and host defence.


Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-1975-8.



  1. Rolig, A. S. et al. The enteric nervous system promotes intestinal health by constraining
    microbiota composition. PLoS Biol. 15 , e2000689 (2017).

  2. Obata, Y. & Pachnis, V. The effect of microbiota and the immune system on the development
    and organization of the enteric nervous system. Gastroenterology 151 , 836–844 (2016).

  3. Dey, N. et al. Regulators of gut motility revealed by a gnotobiotic model of diet-
    microbiome interactions related to travel. Cell 163 , 95–107 (2015).

  4. De Palma, G. et al. Transplantation of fecal microbiota from patients with irritable bowel
    syndrome alters gut function and behavior in recipient mice. Sci. Transl. Med. 9 , eaaf6397
    (2017).

  5. Hyland, N. P. & Cryan, J. F. Microbe–host interactions: influence of the gut microbiota on
    the enteric nervous system. Dev. Biol. 417 , 182–187 (2016).

  6. Yoo, B. B. & Mazmanian, S. K. The enteric network: interactions between the immune and
    nervous systems of the gut. Immunity 46 , 910–926 (2017).

  7. Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev.
    Gastroenterol. Hepatol. 9 , 286–294 (2012).

  8. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin
    biosynthesis. Cell 161 , 264–276 (2015).

  9. Vincent, A. D., Wang, X. Y., Parsons, S. P., Khan, W. I. & Huizinga, J. D. Abnormal absorptive
    colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated
    by mucosal serotonin. Am. J. Physiol. Gastrointest. Liver Physiol. 315 , G896–G907 (2018).
    10. Roberts, R. R., Murphy, J. F., Young, H. M. & Bornstein, J. C. Development of colonic
    motility in the neonatal mouse-studies using spatiotemporal maps. Am. J. Physiol.
    Gastrointest. Liver Physiol. 292 , G930–G938 (2007).
    11. De Vadder, F. et al. Gut microbiota regulates maturation of the adult enteric nervous
    system via enteric serotonin networks. Proc. Natl Acad. Sci. USA 115 , 6458–6463 (2018).
    12. Ge, X. et al. Antibiotics-induced depletion of mice microbiota induces changes in host
    serotonin biosynthesis and intestinal motility. J. Transl. Med. 15 , 13 (2017).
    13. McVey Neufeld, K. A., Mao, Y. K., Bienenstock, J., Foster, J. A. & Kunze, W. A. The
    microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the
    mouse. Neurogastroenterol. Motil. 25 , 183-e88 (2013).
    14. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial
    microbiota. Nat. Rev. Microbiol. 14 , 20–32 (2016).
    15. Stockinger, B., Di Meglio, P., Gialitakis, M. & Duarte, J. H. The aryl hydrocarbon receptor:
    multitasking in the immune system. Annu. Rev. Immunol. 32 , 403–432 (2014).
    16. Schiering, C. et al. Feedback control of AHR signalling regulates intestinal immunity.
    Nature 542 , 242–245 (2017).
    17. Gutiérrez-Vázquez, C. & Quintana, F. J. Regulation of the immune response by the aryl
    hydrocarbon receptor. Immunity 48 , 19–33 (2018).
    18. Stejskalova, L., Dvorak, Z. & Pavek, P. Endogenous and exogenous ligands of aryl
    hydrocarbon receptor: current state of art. Curr. Drug Metab. 12 , 198–212 (2011).
    19. Hibino, H. et al. Inwardly rectifying potassium channels: their structure, function, and
    physiological roles. Physiol. Rev. 90 , 291–366 (2010).
    20. Zholos, A. V., Baidan, L. V., Starodub, A. M. & Wood, J. D. Potassium channels of myenteric
    neurons in guinea-pig small intestine. Neuroscience 89 , 603–618 (1999).
    21. Wang, H. R. et al. Selective inhibition of the Kir2 family of inward rectifier potassium
    channels by a small molecule probe: the discovery, SAR, and pharmacological
    characterization of ML133. ACS Chem. Biol. 6 , 845–856 (2011).
    22. Walisser, J. A., Glover, E., Pande, K., Liss, A. L. & Bradfield, C. A. Aryl hydrocarbon
    receptor-dependent liver development and hepatotoxicity are mediated by different cell
    types. Proc. Natl Acad. Sci. USA 102 , 17858–17863 (2005).
    23. Schmidt, J. V., Su, G. H., Reddy, J. K., Simon, M. C. & Bradfield, C. A. Characterization of a
    murine Ahr null allele: involvement of the Ah receptor in hepatic growth and
    development. Proc. Natl Acad. Sci. USA 93 , 6731–6736 (1996).
    24. Bjeldanes, L. F., Kim, J. Y., Grose, K. R., Bartholomew, J. C. & Bradfield, C. A. Aromatic
    hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro
    and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc. Natl Acad. Sci.
    USA 88 , 9543–9547 (1991).
    25. Metidji, A. et al. The environmental sensor AHR protects from inflammatory damage by
    maintaining intestinal stem cell homeostasis and barrier integrity. Immunity 49 , 353–362
    (2018).
    26. Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease.
    Nat. Commun. 9 , 3294 (2018).
    27. Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in
    health and disease. Cell Host Microbe 23 , 716–724 (2018).
    28. Jankipersadsing, S. A. et al. A GWAS meta-analysis suggests roles for xenobiotic
    metabolism and ion channel activity in the biology of stool frequency. Gut 66 , 756–758
    (2017).
    29. Rothhammer, V. & Quintana, F. J. The aryl hydrocarbon receptor: an environmental sensor
    integrating immune responses in health and disease. Nat. Rev. Immunol. 19 , 184–197
    (2019).
    30. Wilhelmsen, K., Ketema, M., Truong, H. & Sonnenberg, A. KASH-domain proteins in
    nuclear migration, anchorage and other processes. J. Cell Sci. 119 , 5021–5029 (2006).


Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2020
Free download pdf