Nature - USA (2020-02-13)

(Antfer) #1
Nature | Vol 578 | 13 February 2020 | 305

Online content


Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-1977-6.



  1. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates:
    organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18 , 285–298 (2017).

  2. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease.
    Science 357 , eaaf4382 (2017).

  3. Suzuki, K. et al. The pre-autophagosomal structure organized by concerted functions of
    APG genes is essential for autophagosome formation. EMBO J. 20 , 5971–5981 (2001).

  4. Kim, J., Huang, W. P., Stromhaug, P. E. & Klionsky, D. J. Convergence of multiple
    autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane
    compartment prior to de novo vesicle formation. J. Biol. Chem. 277 , 763–773 (2002).

  5. Wang, Z. & Zhang, H. Phase separation, transition, and autophagic degradation of
    proteins in development and pathogenesis. Trends Cell Biol. 29 , 417–427 (2019).

  6. Yamamoto, H. et al. The intrinsically disordered protein Atg13 mediates supramolecular
    assembly of autophagy initiation complexes. Dev. Cell 38 , 86–99 (2016).

  7. Suzuki, K., Kubota, Y., Sekito, T. & Ohsumi, Y. Hierarchy of Atg proteins in pre-
    autophagosomal structure organization. Genes Cells 12 , 209–218 (2007).

  8. Yamamoto, H. et al. Atg9 vesicles are an important membrane source during early steps
    of autophagosome formation. J. Cell Biol. 198 , 219–233 (2012).

  9. Kawamata, T., Kamada, Y., Kabeya, Y., Sekito, T. & Ohsumi, Y. Organization of the pre-
    autophagosomal structure responsible for autophagosome formation. Mol. Biol. Cell 19 ,
    2039–2050 (2008).

  10. Cheong, H., Nair, U., Geng, J. & Klionsky, D. J. The Atg1 kinase complex is involved in the
    regulation of protein recruitment to initiate sequestering vesicle formation for
    nonspecific autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell 19 , 668–681 (2008).

  11. Courchaine, E. M., Lu, A. & Neugebauer, K. M. Droplet organelles? EMBO J. 35 , 1603–1612
    (2016).

  12. Wei, M. T. et al. Phase behaviour of disordered proteins underlying low density and high
    permeability of liquid organelles. Nat. Chem. 9 , 1118–1125 (2017).

  13. Mahen, R., Jeyasekharan, A. D., Barry, N. P. & Venkitaraman, A. R. Continuous polo-like
    kinase 1 activity regulates diffusion to maintain centrosome self-organization during
    mitosis. Proc. Natl Acad. Sci. USA 108 , 9310–9315 (2011).
    14. Kroschwald, S., Maharana, S. & Simon, A. Hexanediol: a chemical probe to investigate the
    material properties of membrane-less compartments. Matters 1–7, https://doi.org/10.19185/
    matters.201702000010 (2017).
    15. Rabouille, C. & Alberti, S. Cell adaptation upon stress: the emerging role of membrane-
    less compartments. Curr. Opin. Cell Biol. 47 , 34–42 (2017).
    16. Fujioka, Y. et al. Structural basis of starvation-induced assembly of the autophagy
    initiation complex. Nat. Struct. Mol. Biol. 21 , 513–521 (2014).
    17. Kamada, Y. et al. Tor-mediated induction of autophagy via an Apg1 protein kinase
    complex. J. Cell Biol. 150 , 1507–1513 (2000).
    18. Yeh, Y. Y., Wrasman, K. & Herman, P. K. Autophosphorylation within the Atg1 activation
    loop is required for both kinase activity and the induction of autophagy in Saccharomyces
    cerevisiae. Genetics 185 , 871–882 (2010).
    19. Kamber, R. A., Shoemaker, C. J. & Denic, V. Receptor-bound targets of selective
    autophagy use a scaffold protein to activate the Atg1 kinase. Mol. Cell 59 , 372–381
    (2015).
    20. Torggler, R. et al. Two independent pathways within selective autophagy converge to
    activate Atg1 kinase at the vacuole. Mol. Cell 64 , 221–235 (2016).
    21. Patel, A. et al. ATP as a biological hydrotrope. Science 356 , 753–756 (2017).
    22. Memisoglu, G., Eapen, V. V., Yang, Y., Klionsky, D. J. & Haber, J. E. PP2C phosphatases
    promote autophagy by dephosphorylation of the Atg1 complex. Proc. Natl Acad. Sci. USA
    116 , 1613–1620 (2019).
    23. Ragusa, M. J., Stanley, R. E. & Hurley, J. H. Architecture of the Atg17 complex as a scaffold
    for autophagosome biogenesis. Cell 151 , 1501–1512 (2012).
    24. Woodruff, J. B., Hyman, A. A. & Boke, E. Organization and function of non-dynamic
    biomolecular condensates. Trends Biochem. Sci. 43 , 81–94 (2018).
    25. Scott, S. V. et al. Apg13p and Vac8p are part of a complex of phosphoproteins that are
    required for cytoplasm to vacuole targeting. J. Biol. Chem. 275 , 25840–25849 (2000).
    26. Jeong, H. et al. Mechanistic insight into the nucleus-vacuole junction based on the
    Vac8p–Nvj1p crystal structure. Proc. Natl Acad. Sci. USA 114 , E4539–E4548 (2017).
    27. Milovanovic, D., Wu, Y., Bian, X. & De Camilli, P. A liquid phase of synapsin and lipid
    vesicles. Science 361 , 604–607 (2018).
    28. Spitzer, M., Wildenhain, J., Rappsilber, J. & Tyers, M. BoxPlotR: a web tool for generation of
    box plots. Nat. Methods 11 , 121–122 (2014).
    29. Ward, J. J., Sodhi, J. S., McGuffin, L. J., Buxton, B. F. & Jones, D. T. Prediction and functional
    analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337 ,
    635–645 (2004).


Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2020

0

20

40

60

80

100

Dots near the vacuole (%)

WT Mutant

0

5

10

15

20

No

.o

fd

roplet

stethere

dt

oG

UV

****

Vac8+ Vac8–

0

5

10

15

No

.o

fd

roplet

stethere

dt

oG

UV ****

bc

e

gh

Vac8 Atg1 Atg13Atg17

Vac8 Atg13Atg17 Merge

GFP–Atg1 DICMerge

DIC

Merge

100 316

Atg13

Atg17

DIC

Time (s)

VAC8

vac8Δ

f

a

Atg13

DIC

Time (s) 605 607 609

d





100200 300

0

5

10

15

5

10

15

Time (s)

No

.ofd

ropl

etso

nG

UV

Average droplet area (AU)

No. of droplets
Average
droplet area

VAC8vac8Δ

Fig. 5 | The liquid-like PAS is tethered to the vacuolar membrane via specif ic
protein–protein interactions. a, Observation of the PAS by monitoring GFP–
Atg1 in wild-type and vac8Δ cells treated with rapamycin for 3 h. Broken circles
indicate the vacuole. Scale bar, 5 μm. b, Proportion of GFP–Atg1 dots observed
adjacent to the vacuole. Data are mean ± s.d. (n = 3 (b), 20 (d) and 30 (f)
independent experiments). *P = 0.0126, two-sided t-test. c, Tethering of Atg1-
complex droplets to a Vac8-anchored GUV. d, Quantification of the number of
Atg1-complex droplets tethered to GUVs after equilibrium. ****P = 1. 3 × 10−9,


two-sided t-test. e, Tethering of scaffold droplets to a Vac8-anchored GUV.
f, Quantification of the number of scaffold droplets tethered to GUVs after
equilibration. ****P = 3.6 × 10−1 3, two-sided t-test. g, Top, time-dependent
change in the number and size of scaffold droplets on a Vac8 GUV. Bottom,
graph shows the number and mean area of droplets ± s.d. (n = droplet numbers).
h, Coalescence between droplets observed in g. Scale bars, 10 μm unless
otherwise indicated. Experiments were repeated independently 3 (a), 20 (c), 30
(e) or 5 (g, h) times with similar results.
Free download pdf