Nature - USA (2020-02-13)

(Antfer) #1
Nature | Vol 578 | 13 February 2020 | 325

translocation than previously thought, and should be considered more
closely in establishing transport mechanisms in general.


Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-1963-z.



  1. Mueckler, M. & Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol.
    Aspects Med. 34 , 121–138 (2013).

  2. Woodrow, C. J., Penny, J. I. & Krishna, S. Intraerythrocytic Plasmodium falciparum
    expresses a high affinity facilitative hexose transporter. J. Biol. Chem. 274 , 7272–7277
    (1999).

  3. Woodrow, C. J., Burchmore, R. J. & Krishna, S. Hexose permeation pathways in
    Plasmodium falciparum-infected erythrocytes. Proc. Natl Acad. Sci. USA 97 , 9931–9936
    (2000).

  4. Deng, D. et al. Molecular basis of ligand recognition and transport by glucose
    transporters. Nature 526 , 391–396 (2015).

  5. Nomura, N. et al. Structure and mechanism of the mammalian fructose transporter
    GLUT5. Nature 526 , 397–401 (2015).

  6. Kirk, K., Horner, H. A. & Kirk, J. Glucose uptake in Plasmodium falciparum-infected
    erythrocytes is an equilibrative not an active process. Mol. Biochem. Parasitol. 82 ,
    195–205 (1996).

  7. Roth, E. Jr. Plasmodium falciparum carbohydrate metabolism: a connection between host
    cell and parasite. Blood Cells 16 , 453–460, 461–466 (1990).

  8. Joet, T., Eckstein-Ludwig, U., Morin, C. & Krishna, S. Validation of the hexose transporter of
    Plasmodium falciparum as a novel drug target. Proc. Natl Acad. Sci. USA 100 , 7476–7479
    (2003).

  9. Dean, P., Major, P., Nakjang, S., Hirt, R. P. & Embley, T. M. Transport proteins of parasitic
    protists and their role in nutrient salvage. Front Plant Sci 5 , 153 (2014).

  10. Ortiz, D. et al. Identification of selective inhibitors of the Plasmodium falciparum hexose
    transporter PfHT by screening focused libraries of anti-malarial compounds. PLoS ONE
    10 , e0123598 (2015).

  11. Krishna, S. et al. Transport processes in Plasmodium falciparum-infected erythrocytes:
    potential as new drug targets. Int. J. Parasitol. 32 , 1567–1573 (2002).

  12. Yan, N. Structural advances for the major facilitator superfamily (MFS) transporters.
    Trends Biochem. Sci. 38 , 151–159 (2013).

  13. Madej, M. G., Sun, L., Yan, N. & Kaback, H. R. Functional architecture of MFS d-glucose
    transporters. Proc. Natl Acad. Sci. USA 111 , E719–E727 (2014).

  14. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli.
    Science 301 , 610–615 (2003).

  15. Maiden, M. C., Davis, E. O., Baldwin, S. A., Moore, D. C. & Henderson, P. J. Mammalian and
    bacterial sugar transport proteins are homologous. Nature 325 , 641–643 (1987).
    16. Pao, S. S., Paulsen, I. T. & Saier, M. H. Jr. Major facilitator superfamily. Microbiol. Mol. Biol.
    Rev. 62 , 1–34 (1998).
    17. Blume, M. et al. A constitutive pan-hexose permease for the Plasmodium life cycle and
    transgenic models for screening of antimalarial sugar analogs. FASEB J. 25 , 1218–1229
    (2011).
    18. Deng, D. et al. Crystal structure of the human glucose transporter GLUT1. Nature 510 ,
    121–125 (2014).
    19. Sun, L. et al. Crystal structure of a bacterial homologue of glucose transporters GLUT1–4.
    Nature 490 , 361–366 (2012).
    20. Quistgaard, E. M., Löw, C., Moberg, P., Trésaugues, L. & Nordlund, P. Structural basis for
    substrate transport in the GLUT-homology family of monosaccharide transporters. Nat.
    Struct. Mol. Biol. 20 , 766–768 (2013).
    21. Wisedchaisri, G., Park, M. S., Iadanza, M. G., Zheng, H. & Gonen, T. Proton-coupled sugar
    transport in the prototypical major facilitator superfamily protein XylE. Nat. Commun. 5 ,
    4521 (2014).
    22. Drew, D. & Boudker, O. Shared molecular mechanisms of membrane transporters. Annu.
    Rev. Biochem. 85 , 543–572 (2016).
    23. Yan, N. A glimpse of membrane transport through structures–advances in the structural
    biology of the GLUT glucose transporters. J. Mol. Biol. 429 , 2710–2725 (2017).
    24. Uldry, M., Ibberson, M., Hosokawa, M. & Thorens, B. GLUT2 is a high affinity glucosamine
    transporter. FEBS Lett. 524 , 199–203 (2002).
    25. Majd, H. et al. Screening of candidate substrates and coupling ions of transporters by
    thermostability shift assays. eLife 7 , e38821 (2018).
    26. Colville, C. A., Seatter, M. J., Jess, T. J., Gould, G. W. & Thomas, H. M. Kinetic analysis of the
    liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes:
    substrate specificities and effects of transport inhibitors. Biochem. J. 290 , 701–706
    (1993).
    27. Burant, C. F., Takeda, J., Brot-Laroche, E., Bell, G. I. & Davidson, N. O. Fructose transporter
    in human spermatozoa and small intestine is GLUT5. J. Biol. Chem. 267 , 14523–14526
    (1992).
    28. Hresko, R. C., Kraft, T. E., Quigley, A., Carpenter, E. P. & Hruz, P. W. Mammalian glucose
    transporter activity is dependent upon anionic and conical phospholipids. J. Biol. Chem.
    291 , 17271–17282 (2016).
    29. Holman, G. D. Chemical biology probes of mammalian GLUT structure and function.
    Biochem. J. 475 , 3511–3534 (2018).
    30. Kraft, T. E. et al. A novel fluorescence resonance energy transfer-based screen in high-
    throughput format to identify inhibitors of malarial and human glucose transporters.
    Antimicrob. Agents Chemother. 60 , 7407–7414 (2016).
    31. Seatter, M. J., De la Rue, S. A., Porter, L. M. & Gould, G. W. QLS motif in transmembrane
    helix VII of the glucose transporter family interacts with the C-1 position of d-glucose and
    is involved in substrate selection at the exofacial binding site. Biochemistry 37 , 1322–1326
    (1998).
    32. Manolescu, A., Salas-Burgos, A. M., Fischbarg, J. & Cheeseman, C. I. Identification of a
    hydrophobic residue as a key determinant of fructose transport by the facilitative hexose
    transporter SLC2A7 (GLUT7). J. Biol. Chem. 280 , 42978–42983 (2005).
    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
    published maps and institutional affiliations.
    © The Author(s), under exclusive licence to Springer Nature Limited 2020

Free download pdf