Nature - USA (2020-02-13)

(Antfer) #1

236 | Nature | Vol 578 | 13 February 2020


Review



  1. Maeder, M. L. et al. Development of a gene-editing approach to restore vision loss in
    Leber congenital amaurosis type 10. Nat. Med. 25 , 229–233 (2019).
    This study explored a method for treating inherited retinal disease using a genome-
    editing approach that uses an AAV5 vector to deliver the S. aureus
    Cas9 and sgRNAs to photoreceptor cells by subretinal injection.

  2. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves
    robust and persistent in vivo genome editing. Cell Rep. 22 , 2227–2235 (2018).
    Lipid nanoparticle-based delivery of mRNA-encoded Cas9 and sgRNAs provided
    therapeutically relevant levels of genome editing in the liver in mice.

  3. Hultquist, J. F. et al. A Cas9 ribonucleoprotein platform for functional genetic studies of
    HIV–host interactions in primary human T cells. Cell Rep. 17 , 1438–1452 (2016).

  4. Wang, J.-Z., Wu, P., Shi, Z.-M., Xu, Y.-L. & Liu, Z.-J. The AAV-mediated and RNA-guided
    CRISPR/Cas9 system for gene therapy of DMD and BMD. Brain Dev. 39 , 547–556 (2017).

  5. Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N.
    Engl. J. Med. 377 , 1713–1722 (2017).

  6. Yang, Y. et al. A dual AAV system enables the Cas9-mediated correction of a metabolic
    liver disease in newborn mice. Nat. Biotechnol. 34 , 334–338 (2016).

  7. Lau, C.-H. & Suh, Y. In vivo genome editing in animals using AAV–CRISPR system:
    applications to translational research of human disease. F1000Res. 6 , 2153 (2017).

  8. Bengtsson, N. E. et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates
    pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat. Commun. 8 ,
    14454 (2017).

  9. Nelson, C. E. et al. In vivo genome editing improves muscle function in a mouse model of
    Duchenne muscular dystrophy. Science 351 , 403–407 (2016).
    In this study, the feasibility of achieving therapeutically meaningful levels of genome
    editing in affected tissues in a mouse model of muscular dystrophy was demonstrated.

  10. Tabebordbar, M. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem
    cells. Science 351 , 407–411 (2016).
    The feasibility of achieving therapeutically meaningful levels of genome editing in
    affected tissues in a mouse model of muscular dystrophy was demonstrated.

  11. Li, H. et al. Inhibition of HBV expression in HBV transgenic mice using AAV-delivered
    CRISPR–SaCas9. Front. Immunol. 9 , 2080 (2018).

  12. Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from
    Campylobacter jejuni. Nat. Commun. 8 , 14500 (2017).

  13. Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins
    in humans. Nat. Med. 25 , 249–254 (2019).

  14. Simhadri, V. L. et al. Prevalence of pre-existing antibodies to CRISPR-associated nuclease
    Cas9 in the USA population. Mol. Ther. Methods Clin. Dev. 10 , 105–112 (2018).

  15. Sandoval, I. M., Kuhn, N. M. & Manfredsson, F. P. Multimodal production of adeno-
    associated virus. Methods Mol. Biol. 1937 , 101–124 (2019).

  16. Sandro, Q., Relizani, K. & Benchaouir, R. AAV production using baculovirus expression
    vector system. Methods Mol. Biol. 1937 , 91–99 (2019).

  17. Strobel, B. et al. Standardized, scalable, and timely flexible adeno-associated virus vector
    production using frozen high-density HEK-293 cell stocks and CELLdiscs. Hum. Gene
    Ther. Methods 30 , 23–33 (2019).

  18. Miller, J. B. et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by
    synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Edn 56 ,
    1059–1063 (2017).

  19. Wang, M. et al. Efficient delivery of genome-editing proteins using bioreducible lipid
    nanoparticles. Proc. Natl Acad. Sci. USA 113 , 2868–2873 (2016).

  20. Yeh, W.-H., Chiang, H., Rees, H. A., Edge, A. S. B. & Liu, D. R. In vivo base editing of post-
    mitotic sensory cells. Nat. Commun. 9 , 2184 (2018).

  21. Gao, X. et al. Treatment of autosomal dominant hearing loss by in vivo delivery of
    genome editing agents. Nature 553 , 217–221 (2018).

  22. Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-
    based genome editing in vitro and in vivo. Nat. Biotechnol. 33 , 73–80 (2015).

  23. Staahl, B. T. et al. Efficient genome editing in the mouse brain by local delivery of
    engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol. 35 , 431–434 (2017).

  24. Ding, Y. et al. Gold nanoparticles for nucleic acid delivery. Mol. Ther. 22 , 1075–1083
    (2014).

  25. Glass, Z., Li, Y. & Xu, Q. Nanoparticles for CRISPR–Cas9 delivery. Nat. Biomed. Eng. 1 ,
    854–855 (2017).

  26. Lee, K. et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo
    induces homology-directed DNA repair. Nat. Biomed. Eng. 1 , 889–901 (2017).

  27. Sago, C. D. et al. High-throughput in vivo screen of functional mRNA delivery identifies
    nanoparticles for endothelial cell gene editing. Proc. Natl Acad. Sci. USA 115 , E9944–
    E9952 (2018).

  28. Qin, W. & Wang, H. Delivery of CRISPR–Cas9 into mouse zygotes by electroporation.
    Methods Mol. Biol. 1 874, 179–190 (2019).

  29. Tanihara, F. et al. Generation of a TP53-modified porcine cancer model by CRISPR/Cas9-
    mediated gene modification in porcine zygotes via electroporation. PLoS ONE 13 ,
    e0206360 (2018).

  30. Xu, L. et al. CRISPR-mediated genome editing restores dystrophin expression and
    function in mdx mice. Mol. Ther. 24 , 564–569 (2016).

  31. Kim, S., Kim, D., Cho, S. W., Kim, J. & Kim, J.-S. Highly efficient RNA-guided genome
    editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24 ,
    1012–1019 (2014).
    This study demonstrated the use of purified protein–guide RNA complexes for genome
    editing in human cells.

  32. Lin, S., Staahl, B. T., Alla, R. K. & Doudna, J. A. Enhanced homology-directed human genome
    engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3 , e04766 (2014).

  33. Gaj, T. et al. Targeted gene knock-in by homology-directed genome editing using Cas9
    ribonucleoprotein and AAV donor delivery. Nucleic Acids Res. 45 , e98 (2017).

  34. Rouet, R. et al. Receptor-mediated delivery of CRISPR–Cas9 endonuclease for cell-
    type-specific gene editing. J. Am. Chem. Soc. 140 , 6596–6603 (2018).

  35. Yin, J. et al. Potent protein delivery into mammalian cells via a supercharged polypeptide.
    J. Am. Chem. Soc. 140 , 17234–17240 (2018).
    89. Riley, R. S., June, C. H., Langer, R. & Mitchell, M. J. Delivery technologies for cancer
    immunotherapy. Nat. Rev. Drug Discov. 18 , 175–196 (2019).
    90. Sun, Y. et al. Advances of blood cell-based drug delivery systems. Eur. J. Pharm. Sci. 96 ,
    115–128 (2017).
    91. Sharma, P. et al. Efficient intracellular delivery of biomacromolecules employing clusters
    of zinc oxide nanowires. Nanoscale 9 , 15371–15378 (2017).
    92. Kim, D., Luk, K., Wolfe, S. A. & Kim, J.-S. Evaluating and enhancing target specificity of
    gene-editing nucleases and deaminases. Annu. Rev. Biochem. 88 , 191–220 (2019).
    93. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–
    Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36 , 765–771
    (2018).
    94. Poirot, L. et al. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf”
    adoptive T-cell immunotherapies. Cancer Res. 75 , 3853–3864 (2015).
    95. Bak, R. O. et al. Multiplexed genetic engineering of human hematopoietic stem and
    progenitor cells using CRISPR/Cas9 and AAV6. eLife 6 , e27873 (2017).
    96. Tichy, E. D. et al. Mouse embryonic stem cells, but not somatic cells, predominantly use
    homologous recombination to repair double-strand DNA breaks. Stem Cells Dev. 19 ,
    1699–1711 (2010).
    97. Buechele, C. et al. MLL leukemia induction by genome editing of human CD34+
    hematopoietic cells. Blood 126 , 1683–1694 (2015).
    98. Maddalo, D. et al. In vivo engineering of oncogenic chromosomal rearrangements with
    the CRISPR/Cas9 system. Nature 516 , 423–427 (2014).
    99. NIST. NIST Genome Editing Consortium https://www.nist.gov/programs-projects/nist-
    genome-editing-consortium (NIST, 2017).
    100. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in
    eukaryotes. Cell 154 , 442–451 (2013).
    101. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167 , 233–247 (2016).
    CRISPR–Cas9 fusion proteins were used to introduce targeted epigenetic changes into
    cellular genomes.
    102. Wilson, R. C. & Carroll, D. The daunting economics of therapeutic genome editing.
    CRISPR J. 2 , 280–284 (2019).
    103. Wagner, D. L. et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells
    within the adult human population. Nat. Med. 25 , 242–248 (2019).
    104. Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR–Cas9 genome
    editing induces a p53-mediated DNA damage response. Nat. Med. 24 , 927–930 (2018).
    105. Ihry, R. J. et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells.
    Nat. Med. 24 , 939–946 (2018).
    106. Schiroli, G. et al. Precise gene editing preserves hematopoietic stem cell function
    following transient p53-mediated DNA damage response. Cell Stem Cell 24 , 551–565.e8
    (2019).
    107. Xu, L. et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic
    leukemia. N. Engl. J. Med. 381 , 1240–1247 (2019).
    108. Porteus, M. H. A new class of medicines through DNA editing. N. Engl. J. Med. 380 , 947–
    959 (2019).
    109. Liang, P. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes.
    Protein Cell 6 , 363–372 (2015).
    110. Fogarty, N. M. E. et al. Genome editing reveals a role for OCT4 in human embryogenesis.
    Nature 550 , 67–73 (2017).
    111. Tang, L. et al. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein.
    Mol. Genet. Genomics 292 , 525–533 (2017).
    112. Ma, H. et al. Correction of a pathogenic gene mutation in human embryos. Nature 548 ,
    413–419 (2017).
    113. Kaul, S., Heitner, S. B. & Mitalipov, S. Sarcomere gene mutation correction. Eur. Heart J.
    39 , 1506–1507 (2018).
    114. Egli, D. et al. Inter-homologue repair in fertilized human eggs? Nature 560 , E5–E7 (2018).
    115. Ormond, K. E. et al. Human germline genome editing. Am. J. Hum. Genet. 101 , 167–176 (2017).


Acknowledgements J.A.D. thanks M. Hochstrasser and M. Triplet for extensive expert
assistance with manuscript editing, formatting, referencing and illustrations. D. Carroll, F.
Urnov and R. Wilson provided comments on the manuscript. T. Tolpa created the artwork with
input from M. Hochstrasser and E. Stahl, and with support from the Innovative Genomics
Institute. J.A.D. is an investigator of the Howard Hughes Medical Institute (HHMI) and a Paul
Allen Distinguished Investigator. In addition to funding from HHMI and the Paul Allen Frontiers
Group, research in the Doudna laboratory is supported by the Defense Advanced Research
Projects Agency (DARPA) (award HR0011-17-2-0043), the William M. Keck Foundation, a
Collaborative MS Research Center Award from the National Multiple Sclerosis Society, the
Centers for Excellence in Genomic Science of the National Institutes of Health under award
number RM1HG009490, the Somatic Cell Genome Editing Program of the Common Fund of
the National Institutes of Health under award number U01AI142817-02 and the National
Science Foundation under award number 1817593.

Competing interests J.A.D. is a co-founder of Caribou Biosciences, Editas Medicine, Intellia
Therapeutics, Scribe Therapeutics and Mammoth Biosciences; a scientific adviser to Caribou
Biosciences, Intellia Therapeutics, Scribe Therapeutics, Synthego, Inari and eFFECTOR
Therapeutics; and a director of Johnson & Johnson. The Regents of the University of California
have patents issued and pending for CRISPR-related technologies on which J.A.D. is an
inventor.
Additional information
Correspondence and requests for materials should be addressed to J.A.D.
Peer review information Nature thanks R. Alta Charo and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
© Springer Nature Limited 2020
Free download pdf