Nature - USA (2020-02-13)

(Antfer) #1

250 | Nature | Vol 578 | 13 February 2020


Article


straight topological waveguide located just below the triangular laser
cavity (Fig. 4a). Each CW (CCW) cavity mode evanescently couples to
the straight waveguide, propagates to the right (left) and then outcou-
ples via a second-order grating. This sample is found to support three
topological lasing modes with frequencies near 3.2 THz. By selectively
covering the left or the right side of the device, we observe that each
lasing mode emits with approximately equal intensities from the two
facets (Fig. 4c and Extended Data Fig. 10a), indicating that the CW and
CCW cavity modes have equal weights. For comparison, we observe
that the same sample also supports non-topological lasing modes in
a neighbouring frequency range, just above the photonic bandgap
(around 3.4 THz), at high pumping currents, for example at 2.96 A.
The non-topological lasing modes are observed to emit with very dif-
ferent intensities from the two output facets (Fig. 4d and Extended
Data Fig. 10b). This demonstrates a qualitative difference in behaviour
between topological and non-topological lasing modes in a single
device.
In summary, we have implemented electrically pumped lasers based
on the topological edge states of a valley photonic crystal, operating
in the THz frequency regime. By investigating several different device
configurations, we have established a chain of evidence demonstrating
the running-wave features of the topological lasing modes. The most
noteworthy observation is the regular mode spacing, which arises
because the modes have running-wave characteristics despite the
sharp corners of the cavity and various other disturbances. Looking
ahead, there are further opportunities in using the valley degree of
freedom in other active photonic devices, and the realization of an
electrically pumped topological laser points the way towards incor-
porating topological protection into practical device applications.
Apart from promising applications as a robust THz light source, this
QCL platform may find immediate use in exploring the dynamical and
nonlinear features of topological laser modes^33.


Online content


Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-1981-x.



  1. Faist, J. et al. Quantum cascade laser. Science 264 , 553–556 (1994).

  2. Köhler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417 , 156–159
    (2002).

  3. Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82 , 3045–3067
    (2010).

  4. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91 , 015006 (2019).
    5. Wittek, S. et al. Towards the experimental realization of the topological insulator laser. In
    CLEO: QELS_Fundamental Science FTh1D-3 (Optical Society of America, 2017).
    6. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359 , eaar4005
    (2018).
    7. Harari, G. et al. Topological insulator laser: theory. Science 359 , eaar4003 (2018).
    8. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries.
    Science 358 , 636–640 (2017).
    9. Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520 ,
    650–655 (2015).
    10. Ma, T. & Shvets, G. All-Si valley-Hall photonic topological insulator. New J. Phys. 18 ,
    025012 (2016).
    11. Gao, F. et al. Topologically protected refraction of robust kink states in valley photonic
    crystals. Nat. Phys. 14 , 140–144 (2018).
    12. Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1 , 16055 (2016).
    13. Vitiello, M. S., Scalari, G., Williams, B. & De Natale, P. Quantum cascade lasers: 20 years of
    challenges. Opt. Express 23 , 5167–5182 (2015).
    14. Dhillon, S. S. et al. Terahertz transfer onto a telecom optical carrier. Nat. Photonics 1 ,
    411–415 (2007).
    15. Gao, J. R. et al. Terahertz heterodyne receiver based on a quantum cascade laser and a
    superconducting bolometer. Appl. Phys. Lett. 86 , 244104 (2005).
    16. Dean, P. et al. Terahertz imaging using quantum cascade lasers—a review of systems and
    applications. J. Phys. D 47 , 374008 (2014).
    17. Sirtori, C., Barbieri, S. & Colombelli, R. Wave engineering with THz quantum cascade
    lasers. Nat. Photonics 7 , 691–701 (2013).
    18. Zeng, Y., Qiang, B. & Wang, Q. J. Photonic engineering technology for the development of
    terahertz quantum cascade lasers. Adv. Opt. Mater. https://doi.org/10.1002/
    adom.201900573 (2019).
    19. Schröder, H. W., Stein, L., Frölich, D., Fugger, B. & Welling, H. A high-power single-mode
    CW dye ring laser. Appl. Phys. (Berl.) 14 , 377–380 (1977).
    20. Pérez-Serrano, A., Javaloyes, J. & Balle, S. Longitudinal mode multistability in ring and
    Fabry–Pérot lasers: the effect of spatial hole burning. Opt. Express 19 , 3284 (2011).
    21. Gordon, A. et al. Multimode regimes in quantum cascade lasers: from coherent
    instabilities to spatial hole burning. Phys. Rev. A 77 , 053804 (2008).
    22. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with
    topological protection. Nat. Phys. 7 , 907–912 (2011).
    23. Peano, V., Houde, M., Marquardt, F. & Clerk, A. A. Topological quantum fluctuations and
    traveling wave amplifiers. Phys. Rev. X 6 , 041026 (2016).
    24. Zhou, X., Wang, Y., Leykam, D. & Chong, Y. D. Optical isolation with nonlinear topological
    photonics. New J. Phys. 19 , 095002 (2017).
    25. Barik, S. et al. A topological quantum optics interface. Science 359 , 666–668 (2018).
    26. St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat.
    Photonics 11 , 651–656 (2017).
    27. Zhao, H. et al. Topological hybrid silicon microlasers. Nat. Commun. 9 , 981 (2018).
    28. Dong, J. W., Chen, X. D., Zhu, H., Wang, Y. & Zhang, X. Valley photonic crystals for control
    of spin and topology. Nat. Mater. 16 , 298–302 (2017).
    29. Kang, Y., Ni, X., Cheng, X., Khanikaev, A. B. & Genack, A. Z. Pseudo-spin–valley coupled
    edge states in a photonic topological insulator. Nat. Commun. 9 , 3029 (2018).
    30. Shalaev, M. I., Walasik, W., Tsukernik, A., Xu, Y. & Litchinitser, N. M. Robust topologically
    protected transport in photonic crystals at telecommunication wavelengths. Nat.
    Nanotechnol. 14 , 31–34 (2019).
    31. Lu, J. et al. Observation of topological valley transport of sound in sonic crystals. Nat.
    Phys. 13 , 369–374 (2017).
    32. Sandoghdar, V. et al. Very low threshold whispering-gallery-mode microsphere laser.
    Phys. Rev. A 54 , R1777–R1780 (1996).
    33. Seclì, M., Capone, M. & Carusotto, I. Theory of chiral edge state lasing in a two-
    dimensional topological system. Phys. Rev. Res. 1 , 033148 (2019).


Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020
Free download pdf