Solution:
On applique le lemme d’Ito:
(i)dU(t)= 2 dZ(t)− 0 = 0 dt+ 2 dZ(t), ce processus a un zéro drift.
(ii) dV(t) =d[Z(t)]^2 −dt = 2 Z(t)dZ(t)+
1
2
2 [dZ(t)]^2 −dt
par application de la règle de multiplication
dV(t) = 2 Z(t)dZ(t)+dt−dt = 2 Z(t)dZ(t)
Ce processus est zéro drift.
(iii) W(t)= t^2 Z(t)− (^2) ∫
t
0
sZ(s)ds
dW(t) =d[t^2 Z(t)]− 2 tZ(t)dt, or
d[t^2 Z(t)] =t^2 dZ(t)+ 2 tZ(t), d’où dW(t)= t^2 dZ(t), ce processus est égale-
ment sans drift.