Gestion des Risques et Produits Dérivés avec Applications

(Fathi Abid) #1

Dérivation simplifiée du modèle de Black-Scholes:


C(S(t),t) =EtQ[e−r(T−t)max[ 0 ;S(T)−K]∣ 픽t]


C(S(t),t) =EtQ
[


e−r(T−t)max[ 0 ;S(t)e(r−

(^12) σ (^2) )(T−t)+σ(Z(T)−Z(t))
−K]∣픽t
]
Z(T)−Z(t)∼ N(0, T−t)
ε ∼N(0,1)
T−t ε ∼N(0, T−t)
C(S(t),t) =EtQ
[
e−r(T−t)max[ 0 ;S(t)e(r−
(^12) σ (^2) )(T−t)+σε T−t
−K]∣픽t
]
C(S(t),t) =∫
+∞
−∞
e−r(T−t)max[ 0 ;S(t)e(r−
(^12) σ (^2) )(T−t)+σε T−t
−K]


1


2 π

e−^12 ε^2 dε

C(S(t),t)=∫


+∞
ε

e−r(T−t)S(t)e(r−

(^12) σ (^2) )(T−t)+σε T−t 1
2 π
e−^12 ε^2 dε−∫
+∞
ε
e−r(T−t)K^1
2 π
e−^12 ε^2 dε
C(S(t),t)=S(t)∫
+∞
ε
1
2 π
e−r(T−t)e(r−
(^12) σ (^2) )(T−t)+σε T−t− (^12) ε 2
dε−∫
+∞
ε
e−r(T−t)K^1
2 π
e−^12 ε^2 dε
C(S(t),t) =S(t)∫
+∞
ε


1


2 π

e(−

(^12) σ (^2) )(T−t)+σε T−t− (^12) ε 2
dε−∫
+∞
ε
e−r(T−t)K^1
2 π
e−^12 ε^2 dε
C(S(t),t) =S(t)∫
+∞
ε


1


2 π

e−

(^12) (ε−σ T−t)^2
dε−∫
+∞
ε
e−r(T−t)K


1


2 π

e−^12 ε^2 dε

C(S(t),t) =S(t)∫


+∞

(ε−σ T−t)

1


2 π

e−

(^12) (ε−σ T−t)^2
d(ε−σ T−t)−e−r(T−t)KN(−ε)

Free download pdf