ΘC= − Sσ
2 τ (
0,4e−0.125σ^2 τ)−Ee−rτr
(
1
2
−
0,5σ τ
2 π )
0,5
2 π
= 0,099734≈0,1
ΘC= −0,5
Sσ
τ (
0,4e−0.125σ^2 τ)−Ee−rτr(0,5−0,1σ τ)
υC =S τN′( d 1 )
υC =0,4e−0.125σ^2 τS τ
ρC =τEe−r(τ+^1 )N(d 2 )
ρC =τEe−r(τ+^1 )(0,5−0,1σ τ)
κ =−e−rτN(d 2 )
κ =−e−rτ(0,5−0,1σ τ)
Remarque :
Les greeks pour le call :
N′( d)=^1
2 π
e−d
2
2
ΔC=
∂C
∂S
=N(d 1 )
ΓC =
∂ΔC
∂S
=^1
Sσ τ
N′( d 1 )
υC = ∂C
∂σ
=S τN′( d 1 )