ΘC= − ∂C
∂τ=− Sσ
2 τN′( d 1 )−Ee−rτrN(d 2 )ρC =
∂C
∂r=τEe−r(τ+^1 )N(d 2 )κC=
∂C
∂E
=−e−rτN(d 2 )Les greeks pour le put :
ΔP=
∂P
∂S
= −N(−d 1 ) =N(d 1 )− 1ΓP =
∂ΔP
∂S
=^1
Sσ τN′( d 1 )υP =
∂P
∂σ=S τN′( d 1 )ΘP= − ∂P
∂τ= − Sσ
2 τN′( d 1 )−Ee−rτr(N(d 2 )− (^1) )
ρP= =
∂P
∂r=−τEe−r(τ+^1 )N(d 2 )κP= ∂P
∂E
= e−rτ( 1 −N(d 2 ))